• Title/Summary/Keyword: 2022 교육과정

Search Result 709, Processing Time 0.028 seconds

Changes and Issues Regarding the Elementary Science Curriculum: Focusing on Physics (초등 과학 교육과정의 변화와 쟁점 - 물리 영역을 중심으로 -)

  • Byun, Taejin
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.217-235
    • /
    • 2022
  • This study aimed to analyze the changes in the physics curriculum of elementary schools over the past years and to discuss the issues faced by the science curriculum for elementary education prior to the next curriculum revision. We analyzed changes in the elements of the contents from the 7th curriculum to the 2015 revised curriculum and reviewed studies conducted after the revision in 2015. Additionally, three professors majoring in physics education discussed the results of the curriculum analysis. The result indicates that content of the physics curriculum for elementary education was generally reduced after the 7th curriculum. Specifically, difficult concepts were omitted or designated to a higher school level. Concerns related to the science curriculum pertain to the content adequacy and difficulty of the current curriculum, its relationship with mathematics, connection between the Nuri curriculum and the integrated curriculum for the 1st and 2nd grades, and the achievement standard predicate problem.

Trends and Issues of the Korean National Curriculum Documents' Subject-Matter Content System Table: Focusing on the Science Subject Case (우리나라 국가 교육과정 문서상 교과 내용 체계표의 변천과 쟁점 -과학과 사례를 중심으로-)

  • Gyeong-Geon, Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.87-103
    • /
    • 2024
  • The content system table of the subject-matter curriculum is considered important in the Korean national curriculum, textbook writing, and teaching and learning in the classroom. However, studies that comprehensively organize the issues concerning the format of the subject-matter curriculum content system have been scarce. This study scrutinized the evolution of the content system from its inception in The 6th Curriculum to the most recent 2022 Revised National Curriculum, focusing on science curricular. The following issues and suggestions were derived for the format of the subject content system. First, caution should be exercised in using terms such as "domain," "field," and "category," and it should be clarified whether these terms are intended simply for logical differentiation or to serve as a content organizer with a specific emphasis. Second, the nature of components such as "core ideas," which can serve as innovative content organizers, should be strictly defined. Third, while the introduction of three-dimensional content elements such as "knowledge and understanding," "process and skill," and "value and attitude" is viewed positively, it is suggested that a further delineation be made, elaborating how each can be utilized to form core competencies. Fourth, the construction of the subject-specific content system in national curriculum needs caution because whether it will resolve or exacerbate the 'disparity between general curriculum and subject-matter curriculums' is uncertain. Finally, as an apparent pendulum motion of the subject-matter content system is observed in national curriculum documents, efforts should be made to ensure that it does not result in meaningless repetition, but instead achieves meaningful dialectical progress.

Reconstructing the Curriculum for Inclusive Music Classes in Elementary School by Linking the Common Curriculum and the Basic Curriculum (공통 교육과정과 기본 교육과정의 연계를 통한 초등학교 음악과 통합수업의 교육과정 재구성 방안: 지적장애 학생을 위한 창작 활동을 중심으로)

  • Won, Chorong
    • Journal of Music and Human Behavior
    • /
    • v.19 no.1
    • /
    • pp.69-92
    • /
    • 2022
  • The purpose of this study was to present a methodology for reconstructing the curriculum to provide appropriate music education to students with special needs in inclusive classrooms. This study presents a customizing music curriculum reconstructing model for students with special needs. This model consists of six stages: analyzing students' characteristics and educational needs, analyzing the common music curriculum and basic music curriculum, establishing specified assessment criteria for achievement standards, analyzing the music textbook for the common curriculum and basic curriculum, reorganizing educational activities in music units, and conducting differentiated music instruction. This study presents an example of the customization process and focuses on a creative music activity for students with intellectual disabilities. Recommendations and guidelines for reconstructing the curriculum to best meet the educational needs of students with special needs are provided.

An Exploratory Study on the Experts' Perception of Science Curriculum Localization Policy: Focus on the Revision of the Arrangement and Implementation Guideline and the Achievement Standard of Curriculum (과학과 교육과정 지역화 정책에 대한 전문가 인식 탐색 -교육과정 편성·운영 지침 및 성취기준 개정을 중심으로-)

  • Chun, Joo-young;Lee, Gyeong-geon;Hong, Hun-gi
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.483-499
    • /
    • 2021
  • The curriculum localization policy is closely related to the decentralization and autonomy policy, which is a direction of the 2022 revised curriculum. In particular, considering the continuously expanding and changing environment and contents in science education, the localization of the science curriculum has the advantage of advancing to expertise through diversity. In this paper, through experts' perception of the science curriculum localization policy, the implications of the curriculum revision were confirmed, focusing on 'MPOE(Metropolitan and Provincial Offices of Education) curriculum arrangement and implementation guidelines(hereinafter referred to as 'guidelines')' and the achievement standards revision of science curriculum. In conclusion, study participants considered that the possibility of expanding the localization of the curriculum was high due to the unique characteristics of science practices. And they recognized the level of localization at the 'district office of education or village'-level between MPOE-level and school-level. When localization reaches the school-level in the future, it was considered necessary to discuss linkage with teacher policies such as teacher's competency, noting that the level of teachers could become the level of localization. In addition, there was a common perception that in order for the science 'guidelines' to be localized, 17 MPOE must be given the authority to autonomously organize some achievement standards in parallel. It was considered that 'restructuring or slimming of achievement standards' should precede localization of achievement standards in connection with this. On the other hand, it was predicted that the curriculum localization policy would enhance the aspect of diversification and autonomy of the science curriculum, and the establishment of achievement standards was directly related to evaluation, so it recognized the need to refine policies such as new description for evaluation clause in future science 'guidelines'. Finally, considering science and characteristics, it was mentioned that it is necessary to specify regional intensive science education policies in the 'guidelines' themselves beyond the localization of teaching materials.

Extracting the hierarchical learning elements for the 'Algorithms and Programming' Area of the 2022 Revised Secondary Informatics Curriculum (2022 개정 중등 정보과 교육과정의 '알고리즘과 프로그래밍' 영역의 단계별 학습 요소 추출)

  • JaMee Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2024
  • The purpose of this study was to extract hierarchical learning elements in the area of 'Algorithms and Programming' in the 2022 revised secondary informatics curriculum. Intrinsic validity was secured by considering the core ideas presented in the curriculum and the content elements of 'knowledge/understanding', 'process/skills', and 'values/attitudes', and extrinsic validity of the learning elements was obtained through FGI and CVR with 25 experts. The learning elements derived from this study are 7 in the first stage, 18 in the second stage, and 26 in the third stage for middle schools, and 8 in the first stage, 23 in the second stage, and 27 in the third stage for high schools. Although the scope and size of knowledge in each stage may differ, the hierarchy of knowledge in the first stage, which is materialized in the second and third stages, provides direction on how knowledge should be taught. This study is expected to contribute to the implementation of the new curriculum in schools and to improve teachers' understanding of the curriculum.

Exploration of Contents Composition of High School Earth Science for the 2022 Revised Curriculum: Focus on the Area of Astronomy (2022 개정 교육과정 고등학교 지구과학 내용 구성 방안 탐색 -천문 영역을 중심으로-)

  • Kim, Hyunjong
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.441-454
    • /
    • 2021
  • In this study, we propose the composition of contents on the area of astronomy for high school Earth Science elective courses for the 2022 revised curriculum based on high school students' perceptions of changes in Earth Science core concepts over the curriculum revisions, and analysis of learning elements in the area of astronomy for domestic and foreign Earth Science curriculum. Four Earth Science education experts compared and analyzed the astronomy contents presented in Korea, the US, British Columbia (BC) in Canada, Japan, and the International Baccalaureate Diploma Program (IBDP) curriculum. According to the survey results, high school students who answered that they were most interested in the core concepts of astronomy expressed a lot of regret that the contents related to astronomical observation were eliminated from the 2015 revised curriculum. As a result of comparing domestic and foreign curriculum, Korea and IBDP curriculum dealt with the largest amount of learning elements in astronomy. In the case of BC in Canada and IBDP, astronomy was offered as an independent subject, and the curriculums of Japan and Korea dealt with astronomy in the Earth Science subject. According to the results, it is necessary to develop general elective courses in Earth Science with astronomy-related contents with high discriminating power in order to strengthen astronomy education. Since astronomy requires background knowledge from various disciplines and inter-disciplinary learning was required, it is necessary to organize the career-related elective courses in Earth Science so that astronomy can be dealt with according to the knowledge structure of general Astronomy. Based on the research results, ways to organize astronomy contents for Earth Science elective courses were suggested.

Development of the Content Framework for Elementary Artificial Intelligence Literacy Education (초등학생의 인공지능 소양을 기르기 위한 내용체계 개발)

  • Youngsik Jeong
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.375-384
    • /
    • 2022
  • As artificial intelligence(AI) education becomes essential in elementary schools with the revised 2022 curriculum, it is necessary to develop an AI curriculum for elementary school students. In this study, I developed the AI content framework to cultivate AI literacy of elementary school students. AI education areas were largely divided into AI understanding and AI development, and detailed areas were divided into eight categories: using of AI, impact of AI, AI ethics, recognition of AI, data expression, data exploring, learning of AI, and prediction of AI. In addition, twice expert Delphi surveys were conducted to verify the validity of the subject elements and achievement standards for each area. The final draft was finalized after reflecting expert opinions on the AI education content framework. In order for AI education to be expanded in elementary schools in the future, continuous research is needed, such as developing textbooks and teaching tools according based on the AI framework proposed in this study, securing the lesson hours to apply them to schools, and correcting and supplementing the problems of them.

Analysis of the 2015 Revised and 2022 Revised Elementary School Science Achievement Standards Using the TIMSS 2023 Scientific Cognitive Domain Analysis Framework (TIMSS 2023 과학 인지 영역 분석틀을 활용한 2015 개정 및 2022 개정 초등 과학과 성취 기준 분석)

  • Sungchan Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.249-262
    • /
    • 2024
  • The purpose of this study is to analyze the achievement standards of the 2015 revision and 2022 revision of the science curriculum using the TIMSS 2023 science cognitive domain analysis framework. The subject of the study is the achievement standards for all elementary school areas in the 2015 and 2022 revised science curriculum. Three field teachers and one elementary science education expert who majored in elementary science education participated in the research analysis. The results of this study are as follows. First, in the 2022 revised movement and energy field, the ratio of the 'knowing' area was about 16% higher than the 2015 revision, and the ratio of the 'reasoning' area also increased by about 5.8%. Second, in the material field, the proportion of TIMSS 2023 cognitive domains was in the order of 'knowing', 'applying', and 'reasoning' regardless of grade group and curriculum revision period. Third, in the field of life sciences, the proportion of TIMSS 2023 cognitive domains differed depending on grade group and curriculum revision period. Fourth, in the Earth and Space field of the 2022 revision, similar to the other three fields, the proportion of the 'Knowing' field increased and while the 'Applying' field decreased. However, in the 2022 revision, the 'reasoning' area in all three other fields increased, but decreased only in the earth and space fields. Fifth, the 2015 revised integrated unit and the 2022 revised science and society field only covered the elements of 'recognizing' and 'presenting examples' in the 'knowing' area, 'making relationships' and 'explaining' in the 'applying' area and 'Synthesize' in the 'reasoning' area. In the 2022 revised elementary school science field, the proportion of the 'knowing' section was 52.5%, the proportion of the 'applying' section was 33.8%, and the proportion of the 'reasoning' section was 13.7%. In conclusion, in the 2022 revised elementary science achievement standards, the ratio of the 'applying' and 'reasoning' areas was low because the reliance on the 'knowing' area was too high.

Analysis of Primary and Secondary Informatics Curriculum Content Components Based on Computing Curricula 2020 (Computing Curricula 2020에 기반한 국내 초·중등 정보 교육과정 내용 요소 분석)

  • JaeRi Jeong;Seong-Won Kim;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.233-236
    • /
    • 2023
  • 본 연구에서는 Computing Curricula 2020에서 제시하고 있는 지식 요소를 바탕으로 초등학교 실과와 중학교 정보 교과의 내용 요소의 변화를 비교·분석해 보았다. 연구 결과, 초등학교는 2022 개정 교육과정에서 총 5개의 지식 요소를 포함하였고, '컴퓨팅 시스템 기초', '디지털 디자인'과 관련한 내용 요소가 추가되었다. 중학교는 2022 개정 교육과정에서 총 11개의 지식 요소를 포함하였고, '운영체제', '지능 시스템(AI)'과 관련한 내용 요소가 추가되었다. 그 중 내용 요소의 비율이 크게 변화한 영역은 '소프트웨어 설계', '자료구조 및 알고리즘과 복잡도', '운영체제', '지능 시스템(AI)' 등이었다. 향후 연구에서는 본 연구에서 분석하지 못한 고등학교 정보과의 내용 요소를 분석해보고자 한다.

  • PDF

Case study of information curriculum for upper-grade students of elementary school (초등학교 고학년 정보 교육과정 사례 연구)

  • Kang, Seol-Joo;Park, Phanwoo;Kim, Wooyeol;Bae, Youngkwon
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.229-238
    • /
    • 2022
  • At the time of discussing the 2022 revised curriculum, the demand for normalization of information education is increasing. This study was conducted on the case of the information curriculum for the upper elementary grades responding to such needs. For 14 6th grade students of Elementary School B in K Metropolitan City, 4 core areas of the information curriculum, including computing system, data, algorithm & programming, and digital culture, were covered through classes. Cooperative classes were conducted between students by using the cloud-based application according to the class. In addition, it was intended to supplement the curriculum by suggesting ideas for artificial intelligence education area, and to improve the density of research with additional investigation on foreign information education cases. However, the need for independent organization of the information curriculum was strongly confirmed in that the current curriculum for information classes lacked sufficient school hours and had to be operated in combination with other subjects in the form of a project for this case study. It is hoped that this study will serve as a small foundation for the establishment of the information curriculum for the upper elementary grades in the future.