• Title/Summary/Keyword: 2.3Ghz

Search Result 2,527, Processing Time 0.028 seconds

Wide Bandwidth Circularly Polarized Aperture Coupled Microstrip Antenna using Cross-slot (십자 슬롯을 이용한 광대역 원형편파 적층 개구결합 마이크로스트립 안테나)

  • 양태식;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.748-754
    • /
    • 2000
  • A novel single feed wide band CP stacked microstrip antenna using crossed slots has been designed, fabricated and measured. For the single rediating element the designed 10dB return loss bandwidth is 34.5%99.45~13.54 GHz), 3dB axial ratio bandwidth is 18.7%(11.17~13.39GHz), and 6 dB gain bandwidth is 29%(10.21~13.64GHz). For the 2$\times$2 array designed using a sequential rotation method, the 10dB return loss bandwidth is 35.9%(9.69~13.94GHz), 3dB axial ratio bandwidth is 34.6GHz (9.93~14.03GHz), and 6dB gain bandwidth is 27.4%(10.35~13.6GHz). For the fabricated 8$\times$8 array antenna, the 10dB return loss bandwidth is 27.3%(10.17~13.41GHz), 3dB axial ratio bandwidth is 27.9GHz(10.1~13.4GHz), and the radiation pattern is good agreement with theory. This antenna can be used for broadband applications for communications or broadcasting in Ku band.

  • PDF

VCO Design using NAND Gate for Low Power Application

  • Kumar, Manoj
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.650-656
    • /
    • 2016
  • Voltage controlled oscillator (VCO) is widely used circuit component in high-performance microprocessors and modern communication systems as a frequency source. In present work, VCO designs using the different combination of NAND gates with three transistors and CMOS inverter are reported. Three, five and seven stages ring VCO circuits are designed. Coarse and fine tuning have been done using two different supply sources. The frequency with coarse tuning varies from 3.31 GHz to 5.60 GHz in three stages, 1.77 GHz to 3.26 GHz in five stages and 1.27 GHz to 2.32 GHz in seven stages VCO respectively. Moreover, for fine tuning frequency varies from 3.70 GHz to 3.94 GHz in three stages, 2.04 GHz to 2.18 GHz in five stages and 1.43 GHz to 1.58 GHz in seven stages VCO respectively. Results of power consumption and phase noise for the VCO circuits are also been reported. Results of proposed VCO circuits have been compared with previously reported circuits and present circuit approach show significant improvement.

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.

Phase Locked Loop Sub-Circuits for 24 GHz Signal Generation in 0.5μm SiGe HBT technology

  • Choi, Woo-Yeol;Kwon, Young-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • In this paper, sub-circuits for 24 GHz phase locked 100ps(PLLs) using $0.5{\mu}m$ SiGe HBT are presented. They are 24 Ghz voltage controlled oscillator(VCO), 24 GHz to 12 GHz regenerative frequency divider(RFD) and 12 GHz to 1.5 GHz static frequency divider. $0.5{\mu}m$ SiGe HBT technology, which offers transistors with 90 GHz fMAX and 3 aluminum metal layers, is employed. The 24 GHz VCO employed series feedback topology for high frequency operation and showed -1.8 to -3.8 dBm output power within tuning range from 23.2 GHz to 26 GHz. The 24 GHz to 12 GHz RFD, based on Gilbert cell mixer, showed 1.2 GHz bandwidth around 24 GHz under 2 dBm input and consumes 44 mA from 3 V power supply including I/O buffers for measurement. ECL based static divider operated up to 12.5 GHz while generating divide by 8 output frequency. The static divider drains 22 mA from 3 V power supply.

Analysis Microstrip Patch Antenna of MIMO Structure (MIMO 구조의 마이크로스트립 패치 안테나 분석)

  • Kim, Sun-Woong;Park, Jung-Jin;Choi, Dong-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.944-949
    • /
    • 2015
  • This study proposed a patch antenna with a MIMO structure which is applicable for wireless communication equipment by combining a single patch antenna with a multi port. The proposed MIMO patch antenna was designed through the TRF-45 substrate with a relative permittivity of 4.5, loss tangent equal to 0.0035 and dielectric high of 1.6 mm, and the center frequency of the antenna was 2.45 GHz in the ISM (Industrial Scientific and Medical) band. The proposed MIMO patch antenna had a 500 MHz bandwidth from 2.16 ~ 2.66 GHz and 24.1% fractional bandwidth. The return loss and VSWR were -62.05 dB, 1.01 at the ISM bandwidth of 2.45 GHz. The Wibro band of 2.3 GHz was -17.43 dB, 1.33, the WiFi band of 2.4 GHz was -31.89 dB, 1.05, and the WiMax band of 2.5 GHz was -36.47 dB, 1.03. The radiation patterns included in the bandwidth were directional, and the WiBro band of 2.3 GHzhad a gain of 4.22 dBi, the WiFi band of 2.4 GHz had a gain of 4.12 dBi, the ISM band of 2.45 GHz had a gain of 4.06dBi, and the WiMax band of 2.5 GHz had a gain of 3.9 6dBi.

Design and Implementation of UWB BPFs (UWB BPF의 설계 및 구현)

  • Kang, Sang-Gee;Lee, Jae-Myung;Hong, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Recently the frequency assignment and the technical specifications of UWB systems for communications are completed. Therefore many UWB systems have been developed. In our country $3.1{\sim}4.8GHz$ and $7.2{\sim}10.2GHz$ are assigned for UWB systems for communications. When we consider RF technologies and the easy implementation of UWB systems, UWB systems used in the low band are more developed than high band systems. In this paper we design and implement a BPF for low band UWB systems by means of considering the easy implementation of UWB systems. The designed and implemented BPFs are low band filter and low band channel filters. The measured results of the low band filter show that the filter has 21.85dB and 17.91dB attenuation at 3.1GHz and 4.8GHz, 1.53GHz of -10dB bandwidth and 2dB of insertion loss. Low band can be divided into 3 channels with 500MHz of the channel bandwidth. The channel filter for channel number 1 has the characteristics of 24.85dB attenuation at 3.1GHz, 0.61GHz of -10dB bandwidth and 1.87dB of insertion loss. The filter for channel 3 in low band has 19.2dB of attenuation at 4.8GHz, 0.49GHz of -10dB bandwidth and 2.49dB of insertion loss.

Design of 2.3 GHz BPF Using Microstrip Line Structure (테프론을 이용한 2.3 GHz 협대역 대역통과필터)

  • ;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.148-150
    • /
    • 2002
  • In this paper, a 5-coupled BPF with teflon substrate is presented. In general, for less than 1 GHz frequency, the narrow bandwidth as well as the good characteristic in the rejection frequency band could be realized using lumped elements. However, for higher than 1 GHz frequency, the distributed elements such as microstrip lines need to be used for the design of the desired BPF For less than 2 GHz, the FR4 shows good filter characteristic at low cost. However, in the range of 2 GHz ~ 10 GHz, the filters with FR4 show a big difference between simulation and measurement results. Thus, in such a high frequency region, the teflon is more preferred to the FR4. The center frequency (fc) of the proposed filter is 2.3 GHz, the insertin loss (IL) is 1.2 dB, the return loss (RL) is 30 dB, bandwidth (BW) is 100 MHz, and the size is 8.3 cm $\times$ 4.9 cm.

  • PDF

A Study on Development of Electro Magnetic Wave Absorbers for Mobile Phones (휴대전화 단말기용 전파 흡수체의 개발에 관한 연구)

  • Choi Yun-Seok;Jung Jae-Hyun;Kim Dong-Il
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.423-429
    • /
    • 2006
  • This paper deals with research for development of electromagnetic wave absorbers in sheet type for mobile phones. By controlling the sendust ratio, the $Al(OH)_3$ coating, the thickness, the kind of binders, and the milling time, electromagnetic wave absorbers were prepared and examined. Central frequency shills toward lower 2.2 GHz, 1.29 GHz, 842 MHz with increasing thickness 1 mm, 2 mm, 3 mm of the absorber, and absorption ability controlled each 2.2 GHz to 1.91 GHz, 1.29 GHz to 801 MHz, 842 MH2 to 801 MHz adjust sendust amount from 80 wt% to 85 wt%. The absorption band of the electromagnetic wave absorber coated with $Al(OH)_3$ becomes larger than that of non-coated one. Sendust composite microwave absorbers mixed with CPE were prepared at $70^{\circ}C$ in temperature. The fabricated electromagnetic wave absorbers show a reflection coefficient 5.76 dB at 1.8 GHz in thickness of 0.85 mm.

Design and Manufacture of Triple-Band Antennas with Two Branch Line and a Vertical Line for WLAN/WiMAX system applications (2개 분기선로와 수직 선로를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Choi, Tae-Il;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2019
  • In this paper, an antenna applicable to WLAN and WiMAX frequency bands is designed, fabricated, and measured. The proposed antenna is designed to have two branch strip line in the patch plane and a rectangular slit in the ground plane based on microstrip feeding for triple band characteristics and added a vertical strip in the ground plane to enhance impedance bandwidth characteristics. The proposed antenna is designed on a substrate with a relative permittivity of 4.4, a thickness of 1.0 mm, and has a size of $18.0mm(W1){\times}37.3mm$ (L4+L5+L7). From the fabricated and measured results, impedance bandwidths of 480 MHz (2.32 to 2.80 GHz) for 2.4/2.5 GHz band, 810 MHz (3.22 to 4.03 GHz) for 3.5 GHz band, and 1,820 MHz (5.05 to 6.87 GHz) for 5.0 GHz band were obtained based on the impedance bandwidth. Measured 3D pattern and gains are displayed.

Design and Fabrication of Dual-Band Patch Antenna with Bridge for WLAN Applications (WLAN용 이중대역 브리지 패치 안테나설계 및 제작)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.547-551
    • /
    • 2010
  • In this paper, Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g(2.4GHz) and 802.11a(5.7GHz). Rectangular patch for 5.7GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4GHz frequency band with 4-bridges to obtain dual band operation in a antenna element. The proposed antenna has a low profile and is fed by $50{\Omega}$ coaxial line. The dielectric constant of the designed antenna substrate is 3.27. Two rectangular patches have each resonance frequencies that are 2.4GHz and 5.7GHz. A dual-band characteristic is shown as connecting two rectangular patch using four bridges. Also, the proposed antenna is shown input return loss that is below -10dB at 2.4GHz and 5.7GHz of WLAN(Wireless LAN).