• Title/Summary/Keyword: 2-primal

Search Result 110, Processing Time 0.023 seconds

ON A RING PROPERTY RELATED TO NILRADICALS

  • Jin, Hai-lan;Piao, Zhelin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.141-150
    • /
    • 2019
  • In this article we investigate the structure of rings in which lower nilradicals coincide with upper nilradicals. Such rings shall be said to be quasi-2-primal. It is shown first that the $K{\ddot{o}}the^{\prime}s$ conjecture holds for quasi-2-primal rings. So the results in this article may provide interesting and useful information to the study of nilradicals in various situations. In the procedure we study the structure of quasi-2-primal rings, and observe various kinds of quasi-2-primal rings which do roles in ring theory.

NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.521-534
    • /
    • 2009
  • In this paper we present new large-update primal-dual interior point algorithms for $P_*$ linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{1}{\sigma}}(e^{{\sigma}(1-t)}-1)$, p $\in$ [0, 1], ${\sigma}{\geq}1$. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*$ LAPS. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*$ LAPS have $O((1+2+\kappa)n^{{\frac{1}{p+1}}}lognlog{\frac{n}{\varepsilon}})$ complexity bound. When p = 1, we have $O((1+2\kappa)\sqrt{n}lognlog\frac{n}{\varepsilon})$ complexity which is so far the best known complexity for large-update methods.

Correlation between the Korean pork grade system and the amount of pork primal cut estimated with AutoFom III

  • Park, Yunhwan;Ko, Eunyoung;Park, Kwangwook;Woo, Changhyun;Kim, Jaeyoung;Lee, Sanghun;Park, Sanghun;Kim, Yun-a;Park, Gyutae;Choi, Jungseok
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.135-142
    • /
    • 2022
  • It is impossible to know the amount of pork primal cut by pig carcass grade which is determined only by carcass weight and backfat thickness in the Korean Pig Carcass System. The aim of this study was to investigate the correlation between the pig carcass grade and the amount of pork primal cut estimated with AutoFom III. A total of 419,321 Landrace, Yorkshire, and Duroc (LYD) pigs were graded with the Korean Pig Carcass Grade System. Amounts of belly, neck, loin, tenderloin, spare ribs, shoulder, and ham were estimated with AutoFom III. Regression equations for seven primal cuts according to each grade were derived. There were significant differences among the three carcass grades due to heteroscedasticity variance (p < 0.0001). Three regression equations were derived from AutoFom III estimation of primal cuts according to carcass grades. The coefficient of determination of the regression equation was 0.941 for grade 1+, 0.982 for grade 1, and 0.993 for grade 2. Regression equations obtained from this study are suitable for AutoFom III software, a useful tool for the analysis of each pig carcass grade in the Korean Pig Carcass Grade System. The high reliability of predicting the amount of primal cut with AutoFom III is advantageous for the management of slaughterhouses to optimize their product sorting in Korea.

Flexible Mixed decomposition Method for Large Scale Linear Programs: -Integration of a Network of Process Models-

  • Ahn, Byong-Hun;Rhee, Seung-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1986
  • In combining dispersed optimization models, either primal or dual(or both) decomposition method widely used as an organizing device. Interpreting the methods economically, the concepts of price and resource-directive coordination are generally well accepted. Most of deomposition/ integration methods utilize either primal information of dual information, not both, from subsystems, while some authors have developed mixed decomposition approaches employing two master problems dealing primal and dual proposals separately. In this paper a hybrid decomposition method is introduced, where one hybrid master problem utilizes the underlying relationships between primal and dual information from each subsystem. The suggested method is well justified with respect to the flexibility in information flow pattern choice (some prices and other quantities) and to the compatibility of subdivision's optimum to the systemwide optimum, that is often lacking in conventional decomposition methods such as Dantzig-Wolfe's. A numerical example is also presented to illustrate the suggested approach.

  • PDF

Joint Mode Selection and Resource Allocation for Device-to-Device Communication Underlaying OFDMA Cellular Networks (OFDMA 셀룰러 네트워크에서의 D2D 통신을 위한 모드 선택 및 자원 할당 기법)

  • Kim, Taehyoung;Min, Kyungsik;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.622-624
    • /
    • 2014
  • In this letter, the joint mode selection and resource allocation method is proposed for D2D communication underlaying OFDMA based cellular networks. In the proposed scheme, D2D mode possible region is determined which satisfies QoS. Then we solve the optimization problem utilizing primal-dual algorithm. The proposed scheme shows better performance than conventional schemes.

REVERSIBILITY OVER PRIME RADICALS

  • Jung, Da Woon;Lee, Yang;Sung, Hyo Jin
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.279-288
    • /
    • 2014
  • The studies of reversible and 2-primal rings have done important roles in noncommutative ring theory. We in this note introduce the concept of quasi-reversible-over-prime-radical (simply, QRPR) as a generalization of the 2-primal ring property. A ring is called QRPR if ab = 0 for $a,b{\in}R$ implies that ab is contained in the prime radical. In this note we study the structure of QRPR rings and examine the QRPR property of several kinds of ring extensions which have roles in noncommutative ring theory.

New large-update primal interior point algorithms based on kernel functions for LCPs

  • Kim, Min-Kyung;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.69-88
    • /
    • 2007
  • In this paper we propose new large-update primal-dual interior point algorithms for $P_{\neq}({\kappa})$ linear complementarity problems(LCPs). New search directions and proximity measures are proposed based on a specific class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{t^{-q}-1}{q}}$, q>0, $p{\in}[0,\;1]$, which are the generalized form of the ones in [3] and [12]. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*({\kappa})$LCPs. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*({\kappa})$ LCPs have the best known complexity $O((1+2{\kappa}){\sqrt{2n}}(log2n)log{\frac{n}{\varepsilon}})$ when p=1 and $q=\frac{1}{2}(log2n)-1$.

  • PDF

AN ELIGIBLE KERNEL BASED PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.235-249
    • /
    • 2013
  • It is well known that each kernel function defines primal-dual interior-point method (IPM). Most of polynomial-time interior-point algorithms for linear optimization (LO) are based on the logarithmic kernel function ([9]). In this paper we define new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has $\mathcal{O}(({\log}\;p)^{\frac{5}{2}}\sqrt{n}{\log}\;n\;{\log}\frac{n}{\epsilon})$ and $\mathcal{O}(q^{\frac{3}{2}}({\log}\;p)^3\sqrt{n}{\log}\;\frac{n}{\epsilon})$ iteration complexity for large- and small-update methods, respectively. These are currently the best known complexity results for such methods.

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.