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Abstract

In combining dispersed optimization models, either primal or dual (or both) decomposition meth-
od is widely used as an organizing device. Interpreting the methods economically, the concepts
of price- and resource-directive coordination are generally well accepted. Most of decomposition/
integration methods utilize either primal information or dual information, not both, from sub-
systems, while some authors have developed mixed decomposition approaches employing two
master problems dealing primal and dual proposals separately. In this paper a hybrid decomposi-
tion method is introduced, where one hybrid master problem utilizes the underlying relationships
between primal and dual information from each subsystem. The suggested method is well
justified with respect to the flexibility in information flow pattern choice (some prices and other
quantities) and to the compatibility of subdivision’s optimum to the systemwide optimum, that
is often lacking in conventional decomposition methods such as Dantzig-Wolfe's. A numerical
example i1s also presented to illustrate the suggested approach.

1. Introduction

In the last twenty five years since Dantzig and Wolfe [5] published the “Decomposition Prin-
ciple” in 1960, numerous decomposition techniques to handle large-scale systems have been

developed (see, for example, comprehensive survey articles by Geoffrion [7], Ruefh [14],

Luna [12], and Gijsbrecht [8]). These works provide not only the optimal solution associated
with large systems, but also help understand the problem of decentralized decision making. In
fact, there exists a vast literature in this field under the headings such as large scale mathema-
tical programming, decentralized decision making, decomposition/coordination, multi-level economic
planning, or resource allocation.

The systems addressed to by these works are usually consist of a set of subsystems with
their own divisional constraints, yet tied together via some linking resources (commonly called
‘common resources’ if these are inputs to all subdivisions, and to be called ‘input-output’ resources
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if these are inputs to some subdivisions but outputs from others). Without these linking const-
raints, each division can be solved individually. In the presence of the common constraints,
however, a center (or a master) and some type of information flow structure is needed to
maintain the common resource balances or the optimal allocation of common resources while
allowing each of intradivision optimum. This can be done typically in three ways, namely,

1) price directive approach

2) resource directive approach

3) mixed approach.

The well known decomposition method by Dantzing and Wolfe [5] originally applied to LP pr-
oblems with block-angular structures is a typical example of the price directive approach. Here,
the master charges the subdivisions for the use of linking resources or subsidizes them for the
production of linking resources. Given this price information, each subdivision finds and reports
to the center its own optimal activity pattern in the form of linking resource requirements and
the contribution to the central objective. With this new information the center sets new prices,
which in turn is notified again back to subdivisions. The center attempts to harmonize the
subdivisions in an iterative fashion to make intradivisional decisions which confirm to the overall
system optimal. Thus, in this approach the price information is given from the center to sub-
divisions, while the quantity information is going opposite.

The second approach has the opposite information flows. The subdivision sets the prices,
while the center sets the quantities. In other words, the center assigns the linking resources
among subdivisions. Then subdivisions, from the optimal programs attainable under the given
linking resource quotas, reports to the center the prices they are willing to pay for the use of
resources or the prices they claim to receive for the output resources. The center improves the
allocation of quota efficiently by ressigning more (less) resources to the subdivision with higher
(lower) prices. This type of decomposition has been discussed by, for example, Kornai and Li-
ptak [10] and Kate [19]. This approach is also applied to the block angular system as Dantzig
and Wolfe did, and can be viewed as a variant of Benders’ decomposition method [13].

Many later decomposition works can be viewed as extensions or modifications of these two
basic approaches geared to complex, realistic situations or to make use of inherent structural
characteristics ([8], [13], [16]).

In parallel with the researches on the decomposition theory as a mathematical tool, a related
research community has explored the applicability and implementability of these mathematical
framework to the decentralized decision making of multidivisional organizations (see [2], [3], [4],
[8], (18]}, for example). It turns out that these basic schemes are not well compatible with the
decentralized decision making environments in two ways: first, the information flow schemes
embedded by the above approaches are not flexible enough to be compatible with the information
flow patterns already existing in the systems, and the second, which is particulary notable in
the linear porogramming framework, is the discrepancy between the subdivision’s optimal
activity patterns under the centralized planning (not being decomposed) and those under the
decentralized fashion with the optimal price information given. This second phenomena can be
easily confirmed from the fact that the optimal activity pattern under the decomposition is



always attained at some extreme points or rays of the subdivision’s own constraint set, while
that under the central planning 1s normally materialized at non-extremal points due to the
existence of linking constraints.

The mixed (hybrid) approach is a partial answer to this. The information flow can be flexible
here. That is, the center can choose to provide price information to some subdivisions and qu-
antity information to others. It can also choose to control some resources via prices and others
via quantities. Since the mixed decomposition methods require to generate both the prices and
the quantities, many works set up two separate master problems: one {primal master) to gen-
erate the prices and the other (dual master) to generate the quantities (for example, symmetric
nonlinear program of Kronsjo (11),doubly linked LP of Stahl [17], and biangular structured [L.Pof
Eto [6]. A few works attempted to use the single master, instead. For a simple block angular
structured LP with combining resource constraints, Obel [13] and Burton and Obel [3, 4] utilized
a single ‘hybrid’ master problem rather than two master problems. To be more realistic, we also
set up a single master problem which generates prices and quantities simultaneously.

To our knowledge, all previous mixed approaches takes the from of ‘vertical’ decomposition
or ‘horizontal decomposition’, but not both. That is, the center provides to a specific subdivision
either all prices or all quantities (the vertical decomposition), or for a given linking resource the
center provides either the price to all subdivisions or the quantity to all subdivisions (the hor-
1zontal decomposition).

The mixed decomposition approach of this paper allows the simultaneous application of ‘ver-
tical’ and ‘horizontal’ decompositions, that is, the center can choose to provide to sudbivisionl
the price for linking resource A and the quantity for resource B, while it provides to subdivision
2 the quantity for resource A and the price for resource B. In this way, our approach can be
set up so that it is compatible with information flow pattern already existing in the organization.

To best illustrate our approach, we have taken a particular type of the block angular type
LP problem. Consider a network of process models (sudbivisions) each of which is a LP type
representation. Each node can be represents the input/output relation between subdivisions. Thus,
in this network the output of each division i1s used as inputs to other subdivisions. This type
of systern is typical in many mterorganizational settings, multidivision firms, inter-industry analysis
and world trade models.

To formulate this system, we introduce some notations. First, suppose there are N subdivisions
in the system. Let Y, denote the activity level vector and ¢; be the corresponding cost vector
for subdivision j. Denote also the constraints local to subdivision j as 7x;= ¢;. Denote also the
price vector of outputs from subdivision j as 2;, and the initial inventory vector of these out-
puts available in the system as &;. The matrix A: represents requirements of the outputs from
¢ needed for the unit operation (x;) of subdivision j (note that A,; represents the negative of
the unit operation output level vector from subdivision j), and the vector b:; indicates the amounts
of subdivision i's outputs delivered to subdivision j (in particular, the vector & denotes the
negative of subdivision j’s output vector). Assume each matix and vector have appropriate di-
mensions. It is noted that all subscripted notations above are either matrices or vectors, not scalars.

Then, the systemwide cost minimzing production pattern of this network of process models
can be summarized as the folléwing block angular LP problem.

ﬁ,v397‘




Subsystem 1

Arsxs
A2

IERR!

Subsystem 2 Subsystem 3

Asz e

Figure 1. Simple Input/Output Relationship among Subsystems

(P) .
minimize 2. ¢j Xj
i=

N
subject to 21 Aijx; = b for 1=1,..., N, (pi: dual vectors)
“

Tixj=t; for 7=1,...,N,  (z;: dual vectors)
and x;j=0 for j=1,..., N.
Then, each sudbivision of this problem can take one of the following forms depending upon
the information flow pattern with the center:

Price-quided Subproblem (Dantzig and Wolfe type): subdivision j receives from the center only
the price information for both the outputs and all the inputs (the outputs of other divisions)

N
(PS) Minimize (¢; + ; piAi)x;
subject to  Tix;=1{; (75)
and x;20

Resource-quided Subproblem (Ten Kate type) : subdivision j receives from the center the out-
put quota (bj;) and the allowed input quota (bi;, i%7)

(RS) Minimize c¢j x;
subject to Aix;<b:; for i=1,....,N, (po)
Tixj=t (7))
and x;=0

Other than these two conventional subproblem formulations, we consider the following two

alternatives.
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Input-price-quided Qutput-resource-quided Subproblem : subdivision j receives the output bj;
and the input prices pi's from the center
(PRS) Minimize (¢ + 20 piAi)x

IET]

subject to Ajjx,=by; (i)
Tixj=t, (T)')
and x; =0

Input-resource-quided Output- price-quided Subproblem : subdivision ;j receives the input al-
lowances bi;j’s (i + ;7 ) and the output price p; from the center
(RPS) Minimize  (¢j+ pjAji) xi

subject to  Aijx; = bij for i%; (p1)
Tixj=t; (7))
and x;20

Most mixed decomposition approaches do use the pure subproblem formulations (FS) and (RS),
rather than (PRS) or (RPS). Our approach utilize ( PRS), believing it 1s more commonly found
in actual applications (even though the symmetric treatment is possible with ( RPS)). Since ( PRS)
requires both the prices and the quantities, the master(s) should generate both. We present two
cases : one with two master problems (one producing the price information the other generating
the quantity information) and the other with one hybnd master problem.

In the next section, the two master problems for (FP), primal and dual, will be developed,
and the resulting decomposition method and its convergence will be discussed. Section 3 presents
another method which requires only one master problem generating both prices and- quantities.
Convergence discussion utilizes the results of Section 2. An illustrative example and computa-
tional issues will be covered in Section 4.

2. Hybrid Decomposition Method Using Two Master Problems

The hybrid decomposition method to be discussed here applies price control to the inputs
and quantity control to the outputs of each subsystem. That is, we use the subproblem for-
mulation ( PRS) rather than (RPS). We will use the similar notation as before in the following
representation. But the notations for prices and quantities are further differentiated by attaching

the upper or as is needed, where the former denotes the information reported by the
subproblems and the latter is that given from the masters, respectively.

Refore introducing our hybrid master problem, we consider the following decomposition scheme
to coordinate the (PRS). In what follows, two master problems are derived for investigating
the coordination process. The first master problem is Dantzig-Wolfe type of (P):

(PM) Minimize  ~ N ~,
$ = Z 2 CJ’.V,A/r

j=1 reRj
N — .
subject to Zl b2y Aisx; Ay =bi for i=1,.., N, (p)
j= reRj
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2 A;,=1 for j=1,.., N (z5)

reR;
and A,z 0 for j=1,..., N and *E R,
where R; is the index set of the accumulated proposals x;’s submitted from the subsystem j.
The other master problem is dual one, which can be derived from the dual of (P). It can be
written as follows :

(DM) . - ¥ e, s
Maximize ¢ = )_._1' Zs (754 — D, b5) His
Jj=1 ¢ J
, - v -

subject to X T Tirp— 2 2 b Auypis=cs for j=1,.., N (x)
sES i=1 s€Si
2 mis=1for j=1,., N (wj)
s €3)

and #is= 0 for j=1,..., N, and s€ S;,

where S, is the index set of the accumulated proposals p;’s and 7,’s submitted from the sub-
system J.

Now we can develop a decomposition procedure to obtain an optimal solution to (P) using
subproblem formulation (PRS). It can be summarized as follows.

Algorithm

Step 0 (Initialization)

Initially guess (5j;, !, i ;) for each J and solve (PRS). Let (3}, 5;) denote the optimal primal
dual solutions from each j and set R} and S} ={0} for every j and £=1.

Step 1 (Iteration £)

If RI=R!™ and SF=S5%" for all j, stop.

Otherwise solve (PM) and (DM), let (fbf, Z]f ), 7=1,..., N denote the optimal dual solutions
(qF =bi— 2 Aix®). If $5= §* stop, otherwise go to Step 2.

L)
Step 2
For each j=1,..., N,
If (g% pHy=(g'"", i1 for each i¥j then next j
Otherwise solve (PRS) with by =q" and pi =5, for each 7%
Let (56;‘, Z)f) denote the optimal solution of the j-th subsystem. If there does not exist »ER;
such that x;=x} then let R{™' =R U { &}, and similarly update S**'=S*U | £}. Repeat to
next j.

Set k= k+1 and return to Step 1.

The above algorithm can solve the original problem (P). In this case, however, the feasible
regions of (PRS) and its dual vary in successive iterations. This fact implies that the general
finite convergence of pure LP decomposition procedures (which generates proposals only from
the extreme point of subproblem feasible sets) cannot be applied any more. This seems to be a
drawback from the computational standpoint, but this is the trade-off we have to accept since
our approach, for that very reason of infiniteness, provides the decentralized optimal decisions



with are compatible with the systemwide decision (recall this is not available in Dantzig-Wolfe
method).

Now we show the convergence of the proposed method.

Lemma 1. At any iteration step, the optimal objective value of (PM) and (DM) satisfy the
follwing relation :

objective of DM (J)é optimal objective of (P) = objective of PM (; ).

Proof. It is helpful to consider the restrictive nature of the both masters. The feasible activity
set of (PM) 1s the subset of that of (P). Similar inner linearization arguments can be applied to
(DM) and the dual of (P), so as to confirm the left inequality.//

Lemma 2. In the successive iteration steps k and (£+1), the following relations will hold.

D F-EH-T M T (g DA X n

2) gk :; (c,-,_%f + k)

[\

> (¢ zJ‘T,+ZpA.,)x +Zrt, -3 by
7 J

k+l ck+l Tk —k+1
3) (:j)cf*1 + 2 [),Aux = — pj bjj T
{xj
.

_— pk+1A/1X -7 ¢ ”bl_wlbj

1
(Y]

4 ¢,z T Py A Z Py
Proof. Note that the iteration indices £ and #+ 1 above imply that the subproblems are
solved first. Thus 1) and 2) can be derived from the strong duality and dual feasibility conditions
of the two master problems. And then 3) denotes the primal/dual objective values of j-# sub-
problem while 4) means the dual feasibility.///

Theorem 1. If (P) has a finite optimal solution, the values obtained Eand ;Z converge to the
optimal objective value of (P).

Proof. Since it is assumed that (P) and its dual are feasible, (PM) and (DM) can be feasible
with some proposals. As iteration proceeds (R; and S; grow), 4 decreases and ¢ increases mono
tonically. By their monotonicity and boundednes% (from the above Lemma 1), lim ¢ and lim sl'
exist. Now it is sufficient to show that lim ¢ =lim ¢
First, let ¢* and ¢* be the limit points of the sequences| ¢#} and{gﬁ"} Now suppose that ¢* >¢"

and take € >0 such that €< (#*— ¢*)/2. For iteration k, let D;= 3* — (c;+ X prAy) 57
which is the negative of the reduced cost for subdivision j’s proposal to the (PM).
After the optimality test of (PM) at iteration (k+1), D; may be positive for some ;. This

amount is an upper bound of initial improvement of master objective value (since the proposal’s
weight A;x+1 is less than or equal to 1), but we can have 2 Dj < e for sufficiently large &
J




(See Appendix to confirm the reason in detail). From this fact and 1) of Lemma 2, we can

write
—k

$— e< (ot TR ANET - Zhy,
J i 7
Similar arguments can be applied to (DM) and we can get the relation,

< k+1

~k _ — - -
¢ +e>T(a-B7 T+ ZpT Ayt + SH G- 55, bi.
J i J 7
Merging above two inequlities by the assumption on e and substitute some arguments by 3)

and 4) of Lemma 2:

~ ~k ~ _ - — _ ~
0<g'—g'—2e< Sh AET = Bk, — Dl — T T+ P A &
J 7 7

i

=S Aux — Zh 6 - T A
J

=X~ T Aii) - X p+ X 3 A E
J 7 7

L] t¥]
= 0.
This contradiction completes the proof. ///

3. Hybrid Decomposition with a Single Master Problem

Now we can introduce our hybrid major decomposition scheme with the preliminary works
above. In order to relate (DM) to (PM), let (DDM) be the dual of (DM) as follows:

(DDM) Minimize ¢ = é}Cij + é‘le'
subject to
wi + T Tixj — iZ[i'lﬁjAjixi 2 Tt—pibifor s€ Sjand j=1,...,N (#;0)
and x; 2 0, w, unrestricted for j=1,..., N

Note that (PM) and (DDM) are of similar form, where the former takes inner linearization-
restriction and the latter takes outer linearization-relaxation according to Geoffrion [7]'s criterion.
Now we merge two master problems into one hybrid master problem (HM) as follows

N N
(HM) Minimize # = 3/ ZK' Cix; Ajr + Z'lw,-
=l reK; j=
subject to
2 X AixiA,+ ¢ = b for j=1,...,N (p5)
ixjrek;
wi + pi( § Ajix;Ajr — )20 fors€Kjand j=1,...,N ()
r€ j
3 A, =1 for j=1,...,N (2;)
r€K;
and Ai;2 0 for » € Kj, w; unrestriced, ¢;=07=1,..., N

where K; is the index set of proposals fom subsystem 7.



The manipulation strategy to obtain the (HM) is applying the approximation x; = ZK' X A,
re J

for each 7 into (DDM). Then since Tjx; = t holds for all j, the (#;) rows become simpler than
that of (DDM). And the () rows are restricted via (p;) rows and ¢; quantity vectors. On the
other hand, (HM) is a relaxed version of (PM) on (p;) rows. Below we describe the hybnd de-
composition method.

Algorithm

Step 0 (Initialization)

Initially quess (3}, pi, i%j) for each j and solve (FRS). Let (x, p}) denote the optimal pri-
mal dual solutions from each j and set Kj1= {0} for every j and k=1

Step 1 (Iteration k)

If K;‘: K;H for all j, stop.

Otherwise solve (HM) and let (Z]f, Z)f), 7=1,..., N denote the optimal primal dual solutions
and go to Step 2.

Step 2

For each j=1,..., N,

If ( 7% 3) =@ P71 for each i j, then next ;.

Otherwise solve (PRS) with b;; = gi and p, = P¥ for each 1 j.

Let ()'cf, ﬁf) denote the optimal solution of the j-#4 subsystem. If there exists s € K; such
that (x}, B) = (X}, b)), then next j,

otherwise let K¥"'= K} U {k!, next ;.

Set = £+ 1 and return to Step 1.

In the above algorithm, we ignored the possibility of case that (PRS) is infeasible (dual un-
bounded solution). But the simple treatment of this possibility (generating new cut using phase
[ multipliers) can be applied as in {13] and [19]. The algorithm utilizes the primal and dual in-
formation simultaneously and find an optimal solution to (P). Now we can investigate the con-
vergence property of the proposed algorithm using the Lemmas and Theorem given before.

Theorem 2. At any iteration, if the given information from subsystems for the two master
method (to (PM) and (DM))and for the single master method (to (HM)) are same (R; and S;
are equivalent to for K; for all j), then the following inequality holds:

g < s ¢
Further, at least one of the two inequalities is strict unless the final optimality is obtained.
Proof. First we show left inequality. Since the feasible region of (DDM) contains that of

(HM) and the objective is to minimize, it trivially holds. Next, the right inequality holds as
follows. Let A;, be optimal to (PM) and substitute it into (HM) with g;= 2 AjiX;A;.
. rek;

Then since ;;,- zZp (b — 2 2 Aix Ii,), =0, and the term in the parenthesis Is
i r€K;

nonpositive, Z}j < 0 can always be attained for all ; at the optimum of (HM). The desired




result is obtained.
Finally, since ¢ < 4 before the optimal solution of (P) is reached, at least one of the above
two inequalities must hold strictly. This completes the proof. ///

Theorem 3. If the original problem (P) has a finite optimum solution, the solutions generated
by the hybrid master problem converge to the optimum of ().

Proof. Consider primal and dual solution of (HM), which can be used for new quantity and
price for the (PRS). And the (PRS) can generate new proposals to (PM) and (DM), although
they are not proposed under the control of (PM) and (DM). Here we can say that the proposals
under the control of (HM) do not interrupt the monotonicity of solutions (PM) and (DM) sinee
the two masters can disregard these proposals if it doesn't help to improve respective objective
value. Now we will show that the sequences | $*} and { ¢*} generated under (HM)'s control
also converge to g* = ¢*. As discussed in proof of Theorem 1 and Appendix, for sufficiently
small &€ < 0 and sufficiently large iteration counter k if $¥ — ¢**1 ¢ & and ¢#+! — e €, then
the subproblem’s proposal must be located in some previous proposal’s € -neighborhood.

So we can derive | ™ — 7*1 | < & Now consider the solutions (", Z*) of (DDM) and (p* 3%

from the dual of (FM). If we substitute (3* ﬁ") into D; defined in the proof of Theorem 1 and

redenote D; as D), the new quantity 3, D;< € is established. The remaining arguments can
7

be applied in the similar manner as in Theorem 1. Hence the conclusion ;* = J’* = can be
obtained. ///

Remarks

1. Since (HM) generates objective values closer to that of (P) than (PM) and (DM) at every
iteration step, it is expected that the hybrid decomposition procedure converges more
rapidly.

2. Another advantage of the proposed method over the two master case is that it solves only
one master problem rather than two. This single master problem do utilize almost twice
as much information as pure decomposition procedures do.

3. Many authors adressed that main drawback of conventional decomposition approaches 1in
light of decentralized decision process is the lack of “autonomy” (e.g., [6], [8]), that is, a
subproblem’s optimal activity pattern given an optimal price information does not in general
guarantee the systemwide material balances. In our hybrid approach, the autonomy of
subsystems in terms of compatibility of local decision with those of global optimal primal/
dual solutions can be accomplished. This is possible because the primal and dual guidelines
given to subsystems are consistent in (HM) and the proposals submitted will satisfy the
primal/dual constraints of (HM) as well, and hence those of (P).

4. Economic interpretation of the control mechanism of the master problem with respect to
the price and quantity coordination: In the course of iterations, the master problem can
generate solutions with either w;= 0, w; >0, or w; < 0. If w; =0, the flow feasibility 1s
obtained, so that next proposal from that subsystem is to be used for reduction of proces-
sing cost only. If w; >0, there exists shortage in the outputs of subsystem j Then the
master of the next iteration requests subsector j to produce more quantity and guides other



subsectors to reduce their consumption of the output of j via the higher price. Similar
coordination of reverse direction also can be exercised and global feasible and optimal solu-

tion is attained eventually.

4. Illustrative Example

We illustrate the proposed approach of Section 3 via the following simple example. Consider
the system with subdivision 1 and subdivision 2, trading their products each other. Suppose
there are no initial inventories of these products. x1 and x2 are activity levels of subdivision® 1,
and » and y2 are those of subdivision 2. The first row represents the material balance for the
output of subdivision 1 (produced by subdivision 1 and consumed by subdivision 2), while the
second shows that for the subdivision 2's output. These two rows are linking resource constraints.

Minimize 3x1 +5x2 + 5y + 3y
subject to 4x1+ 5x2—=5y1 — 3.5y =290
—d4x1 —4x2 + 431+ 5y, =0
3x1 + 4xz = 150
4x1 + 6x2 = 100

2.5y1+ bHy2 = 150
6y1 + 3y2 =2 100
and x1, x2, y1, y2=0

Note that this problem is a block angular type LP. Now we solve this by the hybrid
decomposition method of Section 3 utilizing the subproblem formulation (PRS).

Minimize (3 + 4p2) x1 + (54 4p2) x2 Minimize (5 + 5p1)y1 + (3 + 3.5p1) y2
subject to 4x1 +5x2 2 1 subject to 4y1 +5y2 = g2
3x1 + 4xz2 =150 2.5y + 5y2 = 150
4x1 + 6x2 = 100 6y1 + 3y2 = 100
and x1, x2=2 0 and y1, y2 20

The results of the iterations are summarized in Table 1, where an optimal solution is found
at iteration 7. We also presented optimal solutions obtained without decomposition as well in
Table 2. It should be noted that the optimal activity levels obtained without decomposition is
not necessarily same as those with decomposition, even though the system’s total optimal costs
are same. It is also noted that the former solution is not necessarily compatible with the sub-
division's decentralized optimal production pattern, while the latter confirms to the subdivision’s
optimal behavior. These could be important implications in applying to decentralized decision en-
vironments with existing control information patterns. This implementational feature is not shared
in the Dantzig- Wolfe’'s method.

Note also in Table 1 that prices informed from the master and those reported by the sub-
divisions are equal at termination, and that the quantities from the master and from the sub-

divisions are equal provided the.associated prices are positive.




Table 1. Summary of Iterations

- Mast - _ _ - < . - -
Iteration Ot?js. er h1 D2 q1 qz A b2 q1 qz
0 0.000 0.000 120.00 120.00
1 168. 056 0.750 0.167 101.11 120.00| 0.750 0.167 101.11 120.00
2 164. 907 0.917 0.417 101.11 101.11| 0.917 0.167 101.11 101.11
3 160. 185 0.917 0.472 94.81 101.11| 0.750 0.417 94.81 101.11
4 162. 809 0.333 0.417 101.11 89.63; 0.333 0.278 94.81 101.11
5 164. 558 0.056 0.278 94.81 89.63| 0.056 0.184 94.81 101.11
6 163. 889 0.000 0.185 101.11 100.00] 0.000 0.167 100.00 100.0Q0
7 163. 889 0.000 0.167 94.44 100.00
Table 2. Summary of Final Solutions
Objective X1 x2 » y2 q1 q2 D1 b2
(P) 163.889 | 163. 889 25,0 0.0 11.1 11.1 94.4 100. 0.0 0. 167
(HM) 163.889 | 166.667* | 25.0 0.0 83* 16.7* 100.  100. 0.0 0.167
(PRS) 163. 889 163. 889 250 00| 11.1 11.1 94.4 100. 0.917* 0.167
*’s denote that the alternative optimal solution same as in (P) can be obtained.
«+In (HM), w2 = —2.77778 is the source of the difference between obj. value and total cost.

5. Conclusion

In this paper, we have considered ways of decomposing and integrating a set of activity an-
alysis models each interacting with others via input/output relations. Since this problem is
block angular type, conventional decomposition methods can well be applied to find optimal sol-
utions. We have suggested a new hybrid decomposition scheme where one hybrid master problem
jointly deals primal and dual information from subsystem. We have shown the proposed method
generates the better suboptimal solutions (guranteeing decentralized autonomy) than the pure
decompositions.

Main motivation of this research was to provide a flexible yet implmentable decomposition
method that has been needed in the efforts to utilize the mathematical programming’s decom-
position theory in the decentralized organizational decision making. One that follows this work
would be the decentralized decision making without master. In other words, if each subdivision
is cooperative in the sense that its objective is compatible with the systemwide goal, you could
reach the overall optimum even without the center's coordination. This can also be interpreted
as that each subdivison play the role of the center in turn. This type of decomposition theory



can be applied even in the organization’s management style in addition to the decentralized
decision issues. This work is under investigation and will appear in a subsequent paper.

Appendix
We must show that we can freely choose sufficiciently large % such that D,-ZEf—(c]- + Z'Z),’“

Ay)xs < 8 for any given >0. Thus we confirm 2D,< e for € <0 with 6=¢ /N

Proof. First consider the feasible set of (PRS), which has only finitely many rows. Thus after suffi-
ciently large number of iterations are completed, some proposals from (PRS) are BFS’s defined

by the same set of binding rows only different in their &; constants. In other words, 1f xk 1

and )c'H (r< k) are using the same basis Bj, then they can be denoted B,[bu ti] and B,[b

t;], respectively. But if the iteration counter k. and r are sufficiently large, (¢'* ¢’ ) —0+ as
needed. Recall that b;'s are computed from the dual solution x of (DM). Even if (DDM) has
alternative bases with the same objective value —t; *, their number is finite since the number of
(DM)'s row is finite. Hence we can choose % and 7 such that ¥ "' and ;" are using the same
basis and furhter x* and x* converge to the same limiting point. This observation confirms us

1

. k+1 - .~
that the distance between x;  and x}’.* converges to zero as needed. But we have Dj:Zf*(Cj

<k
2P Ay)x; " =0 since < k Comparing D; and Dj, the desired result follows. ///
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