• Title/Summary/Keyword: 2-phase model

Search Result 2,331, Processing Time 0.03 seconds

Wake Structure of Tip Vortex Generated by a Model Rotor Blade of NACA0015 Airfoil Section (NACA0015익형을 가지는 로터 깃 끝와류의 후류유동구조)

  • Sohn, Yong-Joon;Kim, Jeong-Hyun;Han, Yong-Oun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Evolution of tip vortex generated by a model rotor blade which has a symmetric blade section has been investigated by use of the laser doppler anemometry. Swirl and axial velocity components of tip vortex were measured by the phase averaging technique within one revolution of a rotor blade. It was found that tip vortex becomes matured until 27 degrees and diffuses afterwards with diffusing rate becoming slower compared to the case of the asymmetric blade section, but the tip loss was expected to become more substantial. Swirl velocity components were well fit to n=2 model of Vatistas within measured wake ages, showing the self-similarity exists for the swirl velocity components. The axial components were followed with Gaussian profiles, but had much higher peak values than those of the symmetric blade section.

Development of Prediction Model of Financial Distress and Improvement of Prediction Performance Using Data Mining Techniques (데이터마이닝 기법을 이용한 기업부실화 예측 모델 개발과 예측 성능 향상에 관한 연구)

  • Kim, Raynghyung;Yoo, Donghee;Kim, Gunwoo
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.173-198
    • /
    • 2016
  • Financial distress can damage stakeholders and even lead to significant social costs. Thus, financial distress prediction is an important issue in macroeconomics. However, most existing studies on building a financial distress prediction model have only considered idiosyncratic risk factors without considering systematic risk factors. In this study, we propose a prediction model that considers both the idiosyncratic risk based on a financial ratio and the systematic risk based on a business cycle. Ultimately, we build several IT artifacts associated with financial ratio and add them to the idiosyncratic risk factors as well as address the imbalanced data problem by using an oversampling technique and synthetic minority oversampling technique (SMOTE) to ensure good performance. When considering systematic risk, our study ensures that each data set consists of both financially distressed companies and financially sound companies in each business cycle phase. We conducted several experiments that change the initial imbalanced sample ratio between the two company groups into a 1:1 sample ratio using SMOTE and compared the prediction results from the individual data set. We also predicted data sets from the subsequent business cycle phase as a test set through a built prediction model that used business contraction phase data sets, and then we compared previous prediction performance and subsequent prediction performance. Thus, our findings can provide insights into making rational decisions for stakeholders that are experiencing an economic crisis.

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles

  • Loganathan, Kumaresan;Bommusamy, Palanisamy;Muthaiahpillai, Palanichamy;Velayutham, Murugesan
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Different weight percentages of Ag, Pt, and Au doped nano $TiO_2$ were synthesized using the acetic acid hydrolyzed sol-gel method. The crystallite phase, surface morphology combined with elemental composition and light absorption properties of the doped nano $TiO_2$ were comprehensively examined using X-ray diffraction (XRD), $N_2$ sorption analysis, transmission electron microscopic (TEM), energy dispersive X-ray, and DRS UV-vis analysis. The doping of noble metals stabilized the anatase phase, without conversion to rutile phase. The formation of gold nano particles in Au doped nano $TiO_2$ was confirmed from the XRD patterns for gold. The specific surface area was found to be in the range 50 to 85 $m^2$/g. TEM images confirmed the formation a hexagonal plate like morphology of nano $TiO_2$. The photocatalytic activity of doped nano $TiO_2$ was evaluated using 4-chlorophenol as the model pollutant. Au doped (0.5 wt %) nano $TiO_2$ was found to exhibit higher photocatalytic activity than the other noble metal doped nano $TiO_2$, pure nano $TiO_2$ and commercial $TiO_2$ (Degussa P-25). This enhanced photocatalytic activity was due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer (Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법)

  • Choi, Hyun-Jun;Lee, Won-Bin;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.

3-Dimensional Performance Optimization Model of Snatch Weightlifting

  • Moon, Young-Jin;Darren, Stefanyshyn
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.157-165
    • /
    • 2015
  • Object : The goals of this research were to make Performance Enhanced Model(PE) taken the largest performance index (PI) through artificial variation of principle components calculated by principle component analysis for trial data, and to verify the effect through comparing kinematic factors between trial data (Raw) and PE. Method : Ten subjects (5 men, 5 women) were recruited and 80% of their maximal record was considered. The PI is a regression equation. In order to develop PE, we extracted Principle components from trial position data (by Principle Components Analysis (PCA)). Before PCA, we made 17 position data to 3 row matrix according to components. We calculated 3 eigen value (principle components) through PCA. And except Y (medial-lateral direction) component (because motion of Y component is small), principle components of X (anterior-posterior direction) and Z (vertical direction) components were changed as following. Changed principle components = principle components + principle components ${\times}$ k. After changing the each principle component, we reconstructed position data using the changed principle components and calculated performance index (PI). A Paired t-test was used to compare Raw data and Performance Enhanced Model data. The level of statistical significance was set at $p{\leq}0.05$. Result : The PI was significantly increased about 12.9kg at PE ($101.92{\pm}6.25$) when compared to the Raw data ($91.29{\pm}7.10$). It means that performance can be increased by optimizing 3D positions. The difference of kinematic factors as follows : the movement distance of the bar from start to lock out was significantly larger (about 1cm) for PE, the width of anterior-posterior bar position in full phase was significantly wider (about 1.3cm) for PE and the horizontal displacement toward the weightlifter after beginning of descent from maximal height was significantly greater (about 0.4cm) for PE. Additionally, the minimum knee angle in the 2-pull phase was significantly smaller (approximately 2.7cm) for the PE compared to that of the Raw. PE was decided at proximal position from the Raw (origin point (0,0)) of PC variation). Conclusion : PI was decided at proximal position from the Raw (origin point (0,0)) of PC variation). This means that Performance Enhanced Model was decided by similar motion to the Raw without a great change. Therefore, weightlifters could be accept Performance Enhanced Model easily, comfortably and without large stress. The Performance Enhance Model can provide training direction for athletes to improve their weightlifting records.

Analysis of Alteration for Water Level and Velocity in Tidal Artificial Lake Installed Water Gate and Adoption of Proper Channel Width (적정 수로 폭의 선정과 수문이 설치된 인공 해수호수의 수위 및 유속의 변화 분석)

  • Jang, Changhwan;Kim, Hyoseob;Jang, Sukhwan;Ihm, Namjae
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.289-301
    • /
    • 2012
  • Tidal artificial lake capable of inflow and outflow of seawater is planned for waterfront and eco-friendly space at Songdo, Incheon, Korea. This study for hydrodynamic behaviors of tidal artificial lake was carried out and predicted about water level and velocity within the lake corresponding to width of channel or waterway using by 1 dimensional numerical model(CEA) and 2 dimensional numerical model(FLOW2DH). As a result, the proper width, 100.0m of the channel between the lake and the open sea was calculated reasonable conclusions such as tidal phase lag and maximum velocity from CEA. Also, water level and velocity of each point within the lake was predicted and compared to the measured data from FLOW2DH. FLOW2DH was added to the gate control case for maintenance and administration purpose of the lake and obtained the results that the velocity was decreased by approximately 20% at flood and 50% at ebb than the case without gate control.

Analysis of ELF Magnetic Field Reduction Factor of Electric Power Transmission Line (송전 선로 극저주파 자기장 저감지수(FRF) 특성 해석)

  • Myung, Sung-Ho;Cho, Yeon-Gyu;Lee, Dong-Il;Lim, Yun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1132-1142
    • /
    • 2006
  • This paper examined electric power transmission line models of reducing ELF(Extremely Low Frequency) magnetic field and analyzed the effects about models. In this research, FRF(Field Reduction Factor) of various models reducing magnetic field were analyzed compared to the horizontal 154 kV transmission line. As a result, the reduction ratio of magnetic field was almost proportioned to the compaction of phase-to-phase distance, and in case of diamond model and transposed model, magnetic field was able to be reduced nearly 50 %. It was analyzed that the magnetic field reduction ratio of triangle model was about 33 % and the magnetic field reduction ratio of split model was able to be reduced to 50 %. Especially, the magnetic field reduction ratio of multi split model could be reduced to 80 %.

Analysis of stress and distortion that develop during accelerated cooling of plate (가속냉각시 강판에 발생하는 응력 및 변형에 대한 연구)

  • 김호영;김창영;주웅용;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.952-958
    • /
    • 1988
  • To analyze the nonflatness and residual stress in accelerated cooled plate, a numerical analysis model has been developed. Two factors, i.e. temperature and phase transformation, are considered in calculating the stress distribution that develops during cooling. The plastic strain and plate-buckling, which are often shown in accelerated cooled plate, were determined from this stress. Mean temperature in through thickness direction and temperature difference in width direction are considered in the model to simplify the calculation. The temperature and stress distribution changes caused by phase transformation are involved in terms of the effective specific heat and the effective thermal expansion coefficient. With the model, accelerated cooling of 10mm(t) $^{*}$3000mm(w) plate was simulated. The condition of accelerated cooling was .deg. C/sec from just after hot rolling to 500.deg. C. The initial temperature-difference ratio, .DELTA.Tr, in width direction is an important factor in evaluating the stress distribution. When .DELTA.Tr is 0.08, buckling occurs during cooling and 7kgf/m $m^{2}$ of residual stress develops at the edge of plate. To secure the flatness, .DELTA.Tr should be less than 0.07. Small scaled cooling test was conducted to verify the exactness of the model and the results proved the usefulness of this numerical analysis model.l.