DOI QR코드

DOI QR Code

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar (University Department of Physics, T.M. Bhagalpur University) ;
  • Prasad, K. (University Department of Physics, T.M. Bhagalpur University) ;
  • Chandra, K.P. (Department of Physics, S.M. College) ;
  • Kulkarni, A.R. (Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology)
  • Received : 2012.11.17
  • Accepted : 2013.04.25
  • Published : 2013.06.25

Abstract

Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

Keywords

References

  1. AmarNath, K., Prasad, K., Chandra, K.P. and Kulkarni, A.R. (2012), "Impedance and ac conductivity studies of Ba(Pr1/2Nb1/2)O3 ceramic", Bull. Mater. Sci. (in print)
  2. Bhagat, S. and Prasad, K. (2010), "Structural and impedance spectroscopy analysis of Ba(Fe1/2Nb1/2)O3 ceramic", Phys. Status Solidi (a), 207, 1232-1239.
  3. Boukamp, B.A. (2004), "Electrochemical impedance spectroscopy in solid state ionics: recent advances", Solid State Ionics, 169, 65-73. https://doi.org/10.1016/j.ssi.2003.07.002
  4. Cao, W. and Gerhardt, R. (1990), "Calculation of various relaxation times and conductivity for a single dielectric relaxation processs", Solids State Ionics, 42, 213-221. https://doi.org/10.1016/0167-2738(90)90010-O
  5. Dias, A., Abdul Khalam, L., Sebastian, M.T., Paschoal, C.W.A. and Moreira, R.L. (2006), "Chemical substitution in Ba(RE1/2Nb1/2)O3 (RE = La, Nd, Sm, Gd, Tb, and Y) microwave ceramics and its influence on the crystal structure and phonon modes", Chem. Mater., 18, 214-220. https://doi.org/10.1021/cm051982f
  6. Gerhardt, R. (1954), "Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity", J. Phys. Chem. Solids, 55, 1491-1506.
  7. Khalam, L.A., Sreemoolanathan, H., Ratheesh, R., Mohanan, P. and Sebastian, M.T. (2004), "Preparation, characterization and microwave dielectric properties of [ B′ = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb and In] ceramics", Mater. Sci. Eng. B, 107, 264-270. https://doi.org/10.1016/j.mseb.2003.11.019
  8. Khalam, L.A. and Sebastian, M.T. (2006), "Microwave dielectric properties of [B′ =La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, and In] ceramics", Int. J. Appl. Ceram. Technol., 3, 364-374. https://doi.org/10.1111/j.1744-7402.2006.02096.x
  9. Kroger, F.A. and Vink, H.J. (1956), "Relations between the concentrations of imperfections in crystalline solids", Solid State Phys., 3, 307-435.
  10. Nadeem, M., Akhtar, M.J., Khan, A.Y., Shaheen, R. and Haque, M.N. (2002), "Ac study of 10% Fe-doped La0.65Ca0.35MnO3 material by impedance spectroscopy", Chem. Phys. Lett., 366, 433-439. https://doi.org/10.1016/S0009-2614(02)01662-7
  11. Nobre, M.A.L. and Lanfredi, S. (2003), "Dielectric spectroscopy on Bi3Zn2Sb3O14 ceramic: an approach based on the complex impedance", J. Phys. Chem. Solids, 64, 2457-2464. https://doi.org/10.1016/j.jpcs.2003.08.007
  12. Prasad, K., Kumar, A., Choudhary, S.N. and Choudhary, R.N.P. (2005), "Relaxor behaviour of Pb[(Mg3/4Co1/4)1/3Nb2/3]O3 ceramic", Solid State Ionics, 176, 1641-1646. https://doi.org/10.1016/j.ssi.2005.04.004
  13. Prasad, K., Kumari, K., Lily, Chandra, K.P., Yadav, K.L. and Sen, S. (2007), "Electrical conduction in (Na0.5Bi0.5)TiO3 ceramic: Impedance spectroscopy analysis", Adv. Appl. Ceram., 106, 241-246. https://doi.org/10.1179/174367607X202627
  14. Prasad, K., Bhagat, S., Priyanka, AmarNath, K., Chandra, K.P. and Kulkarni, A.R. (2010a), "Electrical properties of BaY0.5Nb0.5O3 ceramic: Impedance spectroscopy analysis", Physica B: Conden. Matter, 405, 3564-3571. https://doi.org/10.1016/j.physb.2010.05.041
  15. Prasad, K., AmarNath, K., Bhagat, S., Priyanka, Chandra, K.P. and Kulkarni, A.R. (2010b), "Structural and electrical properties of lead-free ceramic: Ba(La1/2Nb1/2)O3", Adv. Appl. Ceram., 109, 225-233. https://doi.org/10.1179/174367509X12503626841677
  16. Prasad, K., Bhagat, S., AmarNath, K., Choudhary, S.N. and Yadav, K.L. (2010c), "Electrical conduction in Ba(Bi0.5Nb0.5)O3 ceramic: impedance spectroscopy analysis", Mater. Sci.-Poland, 28, 317-325.
  17. Prasad, K., Chandra, K.P., Bhagat, S., Choudhary, S.N. and Kulkarni, A.R. (2010d), "Structural and electrical properties of lead-free perovskite Ba(Al1/2Nb1/2)O3", J. Am. Ceram. Soc., 93, 190-196. https://doi.org/10.1111/j.1551-2916.2009.03394.x
  18. Sharma, G.D., Roy, M. and Roy, M.S. (2003), "Charge conduction mechanism and photovoltaic properties of 1,2-diazoamino diphenyl ethane (DDE) based schottky device", Mater. Sci. Eng. B, 104, 15-25. https://doi.org/10.1016/S0921-5107(03)00260-5
  19. Sreemoolanathan, H., Ratheesh, R., Sebastian, M.T. and Mohanan, P. (1997), "Ba(Tb1/2Nb1/2)O3: a new ceramic microwave dielectric resonator," Mater. Lett., 33, 161-165. https://doi.org/10.1016/S0167-577X(97)00100-6
  20. Zurmiihlen, R., Petzelt, J., Kamba, S., Voitsekhovskiia, V.V., Colla, E. and Setter, N. (1995a), "Dielectric spectroscopy of , complex perowskite ceramics: Correlations between ionic parameters and microwave dielectric properties. I. Infrared reflectivity study (1012-1014 Hz)," J. Appl. Phys., 77, 5341-5350. https://doi.org/10.1063/1.359597
  21. Zurmiihlen, R., Petzelt, J., Kamba, S., Kozlov, G., Volkov, A., Gorshunov, B., Dube, D., Tagantsev, A. and Setter, N. (1995b), "Dielectric spectroscopy of Ba($B'_{1/2}$ $B''_{1/2}$)$O_{3}$, complex perovskite ceramics:correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies ($10^{2}$-$10^{12}$ Hz)", J. Appl. Phys., 77, 5351-5364. https://doi.org/10.1063/1.359290

Cited by

  1. Structural and dielectric behaviour analysis of TiO2 addition on the ceramic matrix BiVO4 vol.29, pp.17, 2018, https://doi.org/10.1007/s10854-018-9590-2
  2. Dielectric and electrical study along with the evidences of small polaron tunnelling in Gd doped bismuth ferrite lead titanate composites vol.29, pp.9, 2018, https://doi.org/10.1007/s10854-018-8732-x
  3. Effect of Au ions on structural, optical, magnetic, dielectric, and antibacterial properties of TiO2 dip-coated thin films vol.32, pp.11, 2021, https://doi.org/10.1007/s10854-021-06001-6