• 제목/요약/키워드: 2-periodic knot

검색결과 4건 처리시간 0.017초

ON THE MINKOWSKI UNITS OF 2-PERIODIC KNOTS

  • Lee, Sang-Youl
    • 대한수학회보
    • /
    • 제38권3호
    • /
    • pp.475-486
    • /
    • 2001
  • In this paper we give a relationship among the Minkowski units, for all odd prime number including $\infty$, of 2-periodic knot is $S^3$, its factor knot, and the 2-component link consisting of the factor knot and the set of fixed points of the periodic action.

  • PDF

Open 균일 B-spline 곡면을 이용한 선체 곡면 표현에 관한 연구 (A Study of Geometric Modeling for Ship Hull Forms Using Open Uniform B-spline Surface)

  • 신현경;박규원
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.21-27
    • /
    • 1991
  • 이 논문에서는 periodic 균일 knot vector 뿐만아니라 open 균일 knot vector를 사용하여 선체형상을 Bi-cubic B-spline곡면으로 수식화하는 방법을 보인다. B-spline곡면을 형성하기 위한 B-spline control vertex는 기본 함수의 pseudoinverse matrix를 사용하여 결정된다. 주어진 offset과 형성된 선체곡면을 비교한 결과 잘 일치하였다. 곡면의 순정을 검토하기 위하여 Gaussian곡률을 많은 작은 곡면조각에 대해 계산하여 흑백의 농도 차이를 이용하여 도시화하였다.

  • PDF

SL(2, $\mathbb{C}$)-REPRESENTATION VARIETIES OF PERIODIC LINKS

  • Lee, Sang-Youl
    • East Asian mathematical journal
    • /
    • 제19권2호
    • /
    • pp.317-335
    • /
    • 2003
  • In this paper, we characterize SL(2, $\mathbb{C}$)-representations of an n-periodic link $\tilde{L}$ in terms of SL(2, $\mathbb{C}$)-representations of its quotient link L and express the SL(2, $\mathbb{C}$)-representation variety R($\tilde{L}$) of $\tilde{L}$ as the union of n affine algebraic subsets which have the same dimension. Also, we show that the dimension of R($\tilde{L}$) is bounded by the dimensions of affine algebraic subsets of the SL(2, $\mathbb{C}$)-representation variety R(L) of its quotient link L.

  • PDF

A RECURSIVE FORMULA FOR THE JONES POLYNOMIAL OF 2-BRIDGE LINKS AND APPLICATIONS

  • Lee, Eun-Ju;Lee, Sang-Youl;Seo, Myoung-Soo
    • 대한수학회지
    • /
    • 제46권5호
    • /
    • pp.919-947
    • /
    • 2009
  • In this paper, we give a recursive formula for the Jones polynomial of a 2-bridge knot or link with Conway normal form C($-2n_1$, $2n_2$, $-2n_3$, ..., $(-1)_r2n_r$) in terms of $n_1$, $n_2$, ..., $n_r$. As applications, we also give a recursive formula for the Jones polynomial of a 3-periodic link $L^{(3)}$ with rational quotient L = C(2, $n_1$, -2, $n_2$, ..., $n_r$, $(-1)^r2$) for any nonzero integers $n_1$, $n_2$, ..., $n_r$ and give a formula for the span of the Jones polynomial of $L^{(3)}$ in terms of $n_1$, $n_2$, ..., $n_r$ with $n_i{\neq}{\pm}1$ for all i=1, 2, ..., r.