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ON THE MINKOWSKI UNITS OF 2-PERIODIC KNOTS

SanG Your LEe

ABSTRACT. In this paper we give arelationship among the Minkowski
units, for all odd prime number including co, of 2-periodic knot in
53, its factor knot, and the 2-component link consisting of the factor
knot and the set of fixed points of the periodic action.

1. Introduction

A knot %k in S° is called an n-periodic knot (n > 2} if there exists a
Zn-action on the pair (83, k) such that the fixed point set f of the action
is homeomorphic to a 1-sphere in $° disjoint from the knot k. Tt is well
known that f is unknotted. Hence the quotient map p: % — S%/Z, is
an n-fold cyclic branched covering branched over p(f) = f, and p(k) =
k. is also a knot in the orbit space §3/Z,, = §3, which is called the factor
knot of k. Several relationships among the invariants of n-periodic knot
k, its factor knot k., and the 2-component link £ = &, U f, have been
studied by many authors [2, 6, 7, 9, 10, 12].

The Minkowski unit for a tame knot was first defined by Goeritz
for odd prime integers [1]. Such Minkowski units derived from knot
diagrams are invariants of the linking pairing on the 2-fold branched
covering space. In [11], Murasugi defined the Minkowski unit Cp(£) for
an oriented tame link ¢ by using his symmetric link matrix M [8] of £
for any prime integer p, including p = oo, which is a generalization of
Goeritz’s, although the underlying quadratic form is quite different from
the one used by Goeritz.

In section 2, we show that for any prime integer p, including p = o0,
the Minkowski unit Cp(H (L)} of the modified Goeritz matrix H(L) [13]
agsociated to a regular diagram L of an oriented tame link £ is also an
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invariant of the link type ¢ and it is equal to the Minkowski unit Cp(#)
of the link ¢, as defined by Murasugi.

In section 3, for any odd prime integer p, including oo, we give a
relationship among the Minkowski units Cp(k) of a 2-periodic knot £,
its factor knot k., and the link £ = k, U f, together with |Ag, (—1)| and
|Ag(—1,-1)|, where A, () and Ag(t1,t2) are the Alexander polynomials
of k, and the 2-component link ¢ = k, U f,, respectively.

2. The Minkowski units of the modified Goeritz matrices

Let £ be an oriented link in 52 and let L be its oriented link diagram
in the plane R?2 ¢ ®% = 5% — {oc}. Colour the regions of R?> — L al-
ternately black and white. Denote the white regions by Xg, X1,--- , Xu
{We always take the unbounded region to be white and denote it by Xo).
Let C(L) be the set of all crossings of L. Assign an incidence number
n{c) = L1 to each crossing ¢ € C(L) and define a crossing ¢ € C(L) to
be of type I or type II as indicated in Figure 1.

LB BB N

n(c) = +1

FICURE 1

Let S(L) denote the compact surface with boundary L, which is built
up out of discs and bands. Each disc lies in §2 = R? U {00} and is a
closed black region less a smail neighbourhood of each crossing. Each
crossing gives a small half-twisted band. Let Gy(L) denote the number
of the connected components of the surface S(L).

Let G(L) = (9i)1<i,j<w, where g;; = — Z n{c) for i # 7 and
ceCr(X;, X;}
i = Z 7{c), where Cp(X;,X;) = {¢ € C(L)| ¢ is incident to

CECL(X,')
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both X; and X;} and Cr{X;} = {¢ € C(L)|c is incident to X;}. The
symmetric integral matrix G(L) is called Goeritz matriz of £ associated
to L1, 3.

Let Cyrp(L) = {e1,¢2,--- ,cq} denote the set of all crossings of type I1
in L and let A(L) = diag(—n{c1), —n(ca),-- - , —n{cq)), the d x d diagonal
matrix. Then Traldi [13] defined the modified Goeritz matriz H{L) of £
associated to L by H(L) = G(L) ® A(L) & B(L), where B(L) denotes
the (Go(L) — 1) x (Bp{L) — 1) zero matrix.

Two integral matrices Hy and Hs are said to be equivalent if they can
be transformed into each other by a finite number of the following two
types of transformations and their inverses:

Ty : H — UHU?, where U is a unimodular integral matrix,

Tg:H——)HEB(é —01 .

If Ly and Lo are link diagrams of ambient isotopic oriented links,
then the modified Goeritz matrices H(L;) and H(Lz) are equivalent.
The signature o(£) and the nullity n(¢) of an oriented link £ in 5% are
given by the formulas: o(¢) = o(H(L)), n(€}) = n(H(L)) + 1, where
o(H(L)} and n(H(L)) are the signature and the nullity of the ma-
trix H(L), respectively [13]. The absolute value of the determinant,
det(H (L)), of the modified Goeritz matrix H(L) associated to a dia-
gram L of a link £ is clearly an invariant of the link type £. Let Ag(#)
denote the Alexander polynomial of a knot %. Then it is well known that
|Ak(—1)| = |det(G(K))| = |det(H(K))| for any diagram K of the knot
k.

Now two symmetric rational matrices Ay and A; are said to be R-
equivalent if they can be transformed into each other by a finite number
of the following two types of transformations and their inverses:

Q1:A — RAR!, where R is a nonsingular rational matrix,

, 0 1
QQ.A—-}AEB(]_ 0)

Any n X n nonzero symmetric rational matrix A can he transformed
by ¢Jq into a matrix of the form:

(0 6)

where B is a nonsingular matrix. In particular, if 4 is a symmetric
integral matrix, then A may be transformed by 73 into the same form.
The matrix B is called a nonsingular matriz associated to A.

Let A be an n x n symmetric integral matrix of rank r and B a
nonsingular integral matrix associated to A. Then there is a sequence
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By,Bs,- -, B,, called the o-series of A, of principal minors of B such
that
(1) B; is of order i and is a principal minor of B;y,
(2) For i = 1,2,--- ,7 — 1, no consecutive matrices B; and B;,1 are
both singular.
Denote D; = det(B;). Then for any prime integer p, we define

r—1

Cp(B) = (-1, _DT).’P H(Di: _Di+1);m

i=1
where (a, b), denotes the Hilbert symbol. If Dy = 0, then (D;, —Di11)p
(Dig1, —Diy2)p is interpreted to be (D;, —h), (h, —Diy2)p, where his an
arbitrary nonzero integer. Note that c,(B) is independent of the choice
of o-series of B [5, 11].

DEFINITION 2.1. Let B be a nonsingular integral matrix of order r.
Then the Minkowski units Cp,(B) of B is defined as follows:
(1) For p = 2, Ca(B) = c3(B)(~1)?, where
d? — 1)m
8 7
and [ ] denotes the Gaussian symbol, m the power of 2 occurring

in det(B), and d = 27™det(B).
(2) For any odd prime integer p,

Cp(B) = cp(B){(det(B), p)y,

where o denotes the exponent of p occurring in det(B).
(3) For p = 00,Cx(B) = [[ C,(B), where the product extends over
all prime integer p’s.

=+

Let A be an n x n symmetric integral matrix of rank r and let B and
B’ be any two nonsingular integral matrices of order r associated to A.
Then Cp(B) = Cp(B’) for any prime integer p, including p = oo. The
Minkowski unit Cp{A) of A is defined to be the Minkowski unit Cp(B)
of B.

THEOREM 2.2. Let ¢ be an oriented link in §° and let H(L) be
the modified Goeritz matrix associated to a diagram L of £. Then the
Minkowski unit Cp(H (L)) of H(L) is an invariant of the link type ¢,
denoted by Cp(£), for any prime integer p, including p = 0.
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Proof. Let Ly and Lz be two diagrams of the link ¢ and let H(L;)
and H(L;y) be the modified Goeritz matrices associated to L; and Ly,
respectively. By [11, Lemma 2.4], it suffices to show that H(L;) and
H(Lg) are R-equivalent matrices.

11 : Suppose that H(Ls) = UH(L;)U* with unimodular integral
matrix U. Then it is obvious from @; that H(L,) and H(ls) are R-
equivalent.

H(Li)) O O

T5 : Suppose that H{Lq) = 0 1 0 |.Observe that
0 0 -1
I O O H(Li) O O I 0 0O H{Ly) O O
O 1 -1 0 1 0 o 1 % = o 0 1],
o+ 1 O 0 -1, \0 -1 3 O 1 0
where I denotes the identity matrix with the same order as H{(L,).
H(L;) O O

By @2, O 0 1| is R-equivalent to H(L;). Since H(Ly)

O 1 0
and H(L;) are transformed into each other by a finite sequence of 77,
T,, or their inverses, they are R-equivalent matrices from the above
observations. This completes the proof. d

REMARK 2.3. (1) The set of modified Goeritz matrices H obtained
from the various diagrams of a link £ contains M + M! for some Seifert
matrix M of £. This implies that C,(£) = Cp(H) is equal to the Minkowski
unit Cp(£) defined by Murasugi {11].

(2) Let A be a symmetric integral matrix and let B be a nonsin-
gular matrix associated to A. Let v denote the number of odd primes
of the form 4s + 3 occurring with odd powers in the prime factor de-
composition of det(B). It follows that Coo(A) = (—1)7, where v =
[U(A%—2V] + [J(ABI—ZU] [4]

3. The Minkowski units of 2-periodic knots

Let £ = k. U f. be a 2-component oriented link in 8% such that the
component f, is unknotted and the linking number A of k. and f.,
denoted by A = link(k,, f.), is an odd integer. Then the inverse image
k=py Y(k,) of k. in the 2-fold cyclic branched covering p; : £° — §3
branched over f, is a 2-periodic knot in £* = §? whose factor knot is
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FiGURE 2

the knot &,. Conversely, every 2-periodic knots in §% arises in the this
manner.

Now let L = K. U F, be a regular diagram of £ = k, U f, in R? which
has the form as shown in Figure 2, where the points a1, a3, ,an, are
identified with the points b1,b3,- -« , by. Colour the regions of R? — L
alternately black and white. Let w denote the number of white regions
in the coloured diagram which does not intersect with the trivial com-
ponent F, and let a and b denote the number of the crossings of type II
in K, = L — F, with incidence number +1 and —1, respectively.

In [6, Section 3|, the authors discovered a relationship among the
modified Goeritz matrices of the 2-periodic knot(or link} %, its factor
k., and the link £ = k, U f, which can be summarized as the following
Theorem 3.1.

THEOREM 3.1. Let ¢ = k, U f, be an oriented 2-component link in
53 such that f, is unknotted and A = link(k., f.) is an odd integer. Let
L be a link diagram of £ as shown in Figure 2. Then

(1) The modified Goeritz matrix H(L) of ¢ associated to L equivalent
to the symmetric integral matrix of the form:

M P @ O
Pt Ny R J
Qt R Ny J
o Jt Jt S

H(L) = (-l &)@ E,,
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where M (wxw matrix), P, Q, R, N1, N2 are some integral matrices, S =

O 2
ifriseven, B, = —L 1@ I, if r is odd, and J is the mT_l X (mT_l +1)
matrix of the form: form =1, J =0 and for m > 1,

(O O) , T is the positive integer with A=2r—m, E, = -, & I,

1 -1 6 --- 0 O

0 1 -1 .- 0 0O
J= : .

0 0 0 1 -1

(2) The modified Goeritz matrix H(K.,), K. = L — F., of the com-
ponent k, of £ is given by

_ M P+Q
H(K.) = (Pt +Qt M +N2+R+Rt) ®(~La® ).

(3) Let py : ©% — 5% be the 2-fold cyclic branched covering space
branched over f.. Then the modified Goeritz matrix H{K) of the 2-
periodic knot k = py Yk,) in 2% 2 §% is given by the symmetric matrix
of the form:

M P 0 Q
Pt N,+N, Q! R+ R

HEK) = 15 2 % J}; @ (—LoL)® (-1, &)
Q' R+R P N+ Ny

LEMMA 3.2. Let H(L), H(K.), and H(K) be the modified Goeritz
matrices in Theorem 3.1. Then
(1) There exists a nonsingular rational matrix R such that

RH(K)oT(r)R =2{H(K.)® H(L)} ® —I5, ® I,

where T(r} denotes the diagonal mairix given by

T( ) 4(—Im2—1 & Im2_1+1) & 2(—[234_? & I2b+m—'r—1) if r= even,
) =
Y~Tns © Incs 1) © A=Dratrpr ® Topimr) I = 0dd.

(2) det(H(K)) = Ldet(H (K.))det(H(L))(—1)" .
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Proof. (1) Let

I, O O QD O
O I, —I, (Ny—R)D O
v=|0 0 I, 0 O | & Lys @ Ly,
0O 0 O D 0
0O 0 O Z 1

where s = mT—17 Z = (1 1---1),D = (dfij)lsi'jSS such that dz‘j =1 for
1 > j, otherwise all zero, and ¢(r) = m + 1 or m — 1 according as 7 is
odd or even.

Now define V=1, 68U & [,14 & .4 and

Iw+3 Iw+s o I _%NZ + jrs 0 -
W= |Tuts —Twts O &L “”jNZ —I; O G34{2(&}+b}-§-t(7‘}'
0 O Iypayn) 0 0 1

Then V and W are nonsingular rational matrices and we obtain that

W{HK)®4(I, & -I,& (1) 821, &1, &1, & I, ® E,) )W
= XV)2H(EK ) HL) & (Lo Lo Lo L)HXV)
for an appropriate permutation matrix X. This implies the result.
m—1
(2) By (1), det(H (K))det(R)? = 22~ det(H(K.))det(H(L))(-1)"= .
Since 2|det(H(K))| = |det(H(K.,))||det(H (L))| [6] and det(R)? = 22¥.
This implies the result. O

LEMMA 3.3. Let A be an n x n nonsingular integral matrix and let
m denote the power of 2 occurring in det(A).
(1) Let d = 2=™det(A). Then

2 _1)n
Co(A)(-D) S ifn s odd,

Ca(2A) = {CQ(A)(27d)2 if n is even.

(2) Let p be any odd prime integer and let a be the power of the odd
prime p occurring in det(A). Then

Gyl24) = GyA)(—1) =72

(3) Co(24) = Co(A).

Proof. Let By, Bz, , B, be a g-series of A, where B, = A, and let
D; = det(B;)(i = 1,2, ,n). Then 2B1,2B,, -+ , 2B, is a o-series of
2A. Let D; = det(2B;). Then D; = 2'D; and so, for any prime integer
P,
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cp(24) = (=1, ~Dn)p H(Dia —Dis1)p

= {(-1,=Dn)p [[ (D3, —Dis1)p}e(p)

i=1
= cp(A)e(p),

where
n—1

e(p) = (—1,2%), [ [ (2, =2 Dis1)p (2, D)y

i=1
)1 if n is odd,
{2,det(A)), if nis even.
In order to show (1), let m denote the power of 2 occurring in det(A)

and let d = 27™det(A). Let 7 be the power of 2 oceurring in det(2A4)
and let d = 2 ™det(24). Then /» = m+n and d = d. By Definition 2.1,

Cs(24) = cp(24)(—1)7

e -1)8 if n is odd,
T ) e2(A)(2,det(A))a(—1)2  if n is even,

- T T2 _ )
where = (2] + {1+ [FIHER + C02 — () + {1 + B+
(d —Sl)m) + i —SlJn_ Since det(A) = 2™d and (2,2); = 1, we obtain that

C1(24) = Ca(A)(-1) if n is odd,
C2(A)(2,d)2 if n is even.

(@2 —1n
g

(2) Let a denote the power of p occurring in det(A). By Definition
2.1, for any odd prime integer p,

Cp(24) = c(24)(det(24), p)y = c(24)(det(A),p); (2%, p)y
_ C(A)2,p); if n is odd,
B Cp(A}(2,det(A)), if nis even.
Note that (2,det(A)), = (2,p)5 and (2,p)p = (— 1) = . Hence Cp(2A}
= G (-1,
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(3) Since (24} = g(A) and the number v of odd primes of the form
4s + 3 occurring with odd powers in the prime factor decomposition
of det{2A4) is equal to that of det{A), it follows Remark 2.3(2) that
Coo(2A) = Coo (A) O

From Lemma 3.2, Lemma 3.3, [L1, (2.5)], and the properties of Hilbert
symbol [5], we obtain the following

LEMMA 3.4, For any odd prime integer p,
(1) Cp(T(r)) = 1.
(2) Cp(H(K) @ T(r)) = Cp(H(K)). .

— 1)
(3) Co(2{H(K.) ® H(L)}) = Cy(H(K.) ® H(L))(—1) "5~ , where o
denotes the power of p occurring in det(H (K.} $ H(L)).

Let Ag, () and Ag g, (t1,12) denote the Alexander polynomials of k,
and £ = k, U f., respectively. Then

THEOREM 3.5. Let k be a 2-periodic knot in S* with the fixed point
set f and let k, be its factor knot and f, be the orbit of f. Then

(1) For any odd prime integer p,
(»2-

Cop(k)(—1) 5" = Cy(ks )Gk U fu)(p, p) 3%,

where o, a1, and as denote the powers of p occurring in |Ag(—1)|,
IAk,Uf* (_la _l)la and |Ak*(_l)|: respectively
(2)

n(kj—2u+2)\+2]
3

Coo(k)(—1)!

=Coo (ks }Coo (k- U f)(—1)

where v, 11, and v be the number of odd primes of the form 4s+ 3
occurring with odd powers in the prime factor decomposition of
IAk(_l)lalAk* (_l)la and |Ak‘¢Uf*(_1:"1)|: respeCtjveIY: and [ ]
denotes the Gaussian symbol.

[o(ktzl—2u1 ]+[0{k*Uf4*)—2u2 ],

Proof. From {11, Lemma 2.4] and Lemma 3.2(1), for any prime inte-
ger p, it follows that

Cp(H(K) @ T(r)) = Cp(2{H(K.) & H(L)} & —I20 & Ins).
(1) By [11, (2.5)], Lemma 3.4, and the fact that Cp(—12, @ f25) = 1,
we obtain that for any odd prime p,

Co(H(K)) = Co(H(K.) ® H(I)(-1) =+,
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where « denotes the powers of p occurring in det(H (K, ) @ H(L)) and

Cp(H(K)) = Co H (K, ))Cp(H(L)) (det (H (K.), p)y" (det(H (L), p)p?
(r? = 1))
(det(H(K.)), det(H(L)))p(-1) 5 —,
where a; and a denote the powers of p occurring in det(H(L))
and det(H(K.)), respectively. Let d(k.) = p~*2det(H(K.)),d(f) =
p-*“det(H{(L)). Then a; + a2 = o and

(det(H(K*) p)p’ (det(H (L), p),* (det{H (K.)), det(H (L)))y
(d(k.), d(€))p(p p)p* ™ = (Byp)y" ™
It follows from Lemma 3.2(2) that « is equal to the power of p occurring
in det(H (K'}). This implies the result.

(2) Let v, 1, 1 be the number of odd primes of the form 4s+3 occur-
ring with odd powers in the prime factor decomposition of det(H(K)),
det(H{K,)), det(H(L)), respectively, and let v = [”(k)z_m’] + [d(k) 2.
Then Coo(k) = Coo(H(K)) = (—1)’7. Since 2det(H (K)) = det(H (K, ))
det(H(L)) and o(k) = o(ks) +o(€) +A 6], v = v1 +v2 and v =
["(k’) 21 4 [“(k*uf 2)=2vz) y olk) 2""’2)‘4'2] This implies the result and
we complete the proof of Theorem 3.5. l:l
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