• 제목/요약/키워드: 2-normed spaces

검색결과 101건 처리시간 0.024초

On the Generalized Hyers-Ulam-Rassias Stability for a Functional Equation of Two Types in p-Banach Spaces

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Kyungpook Mathematical Journal
    • /
    • 제48권1호
    • /
    • pp.45-61
    • /
    • 2008
  • We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach spaces for the following functional equation which is two types, that is, either cubic or quadratic: 2f(x+3y) + 6f(x-y) + 12f(2y) = 2f(x - 3y) + 6f(x + y) + 3f(4y). The concept of Hyers-Ulam-Rassias stability originated essentially with the Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.

PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS

  • Revesz, Szilard-Gy.;Sarantopoulos, Yannis
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.157-174
    • /
    • 2004
  • In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical $L^{p}(\mu)$ spaces. In the case $1\;{\leq}\;p\;{\leq}\;2$ we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.

SOME NEW RESULTS ON HYPERSTABILITY OF THE GENERAL LINEAR EQUATION IN (2, β)-BANACH SPACES

  • EL-Fassi, Iz-iddine
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.901-917
    • /
    • 2018
  • In this paper, we first introduce the notions of (2, ${\beta}$)-Banach spaces and we will reformulate the fixed point theorem [10, Theorem 1] in this space. We also show that this theorem is a very efficient and convenient tool for proving the new hyperstability results of the general linear equation in (2, ${\beta}$)-Banach spaces. Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it. Our results are improvements and generalizations of the main results of Piszczek [34], Brzdęk [6, 7] and Bahyrycz et al. [2] in (2, ${\beta}$)-Banach spaces.

QUADRATIC (ρ1, ρ2)-FUNCTIONAL EQUATION IN FUZZY BANACH SPACES

  • Paokant, Siriluk;Shin, Dong Yun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2020
  • In this paper, we consider the following quadratic (ρ1, ρ2)-functional equation (0, 1) $$N(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y)-{\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y))-{\rho}_2(4f({\frac{x+y}{2}})+f(x-y)-f(x)-f(y)),t){\geq}{\frac{t}{t+{\varphi}(x,y)}}$$, where ρ2 are fixed nonzero real numbers with ρ2 ≠ 1 and 2ρ1 + 2ρ2≠ 1, in fuzzy normed spaces. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-functional equation (0.1) in fuzzy Banach spaces.

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

  • Cui, Yinhua;Hyun, Yuntak;Yun, Sungsik
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권2호
    • /
    • pp.109-127
    • /
    • 2017
  • In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • 제34권1_2호
    • /
    • pp.19-34
    • /
    • 2016
  • In this paper, we present a split least-squares characteristic mixed finite element method(MFEM) to get the approximate solutions of the convection dominated Sobolev equations. First, to manage both convection term and time derivative term efficiently, we apply a least-squares characteristic MFEM to get the system of equations in the primal unknown and the flux unknown. Then, we obtain a split least-squares characteristic MFEM to convert the coupled system in two unknowns derived from the least-squares characteristic MFEM into two uncoupled systems in the unknowns. We theoretically prove that the approximations constructed by the split least-squares characteristic MFEM converge with the optimal order in L2 and H1 normed spaces for the primal unknown and with the optimal order in L2 normed space for the flux unknown. And we provide some numerical results to confirm the validity of our theoretical results.

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED ELEMENT METHOD FOR SOBOLEV EQUATIONS WITH A CONVECTION TERM

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • 제35권5호
    • /
    • pp.569-587
    • /
    • 2019
  • In this paper, we consider a split least-squares characteristic mixed element method for Sobolev equations with a convection term. First, to manipulate both convection term and time derivative term efficiently, we apply a characteristic mixed element method to get the system of equations in the primal unknown and the flux unknown and then get a least-squares minimization problem and a least-squares characteristic mixed element scheme. Finally, we obtain a split least-squares characteristic mixed element scheme for the given problem whose system is uncoupled in the unknowns. We prove the optimal order in $L^2$ and $H^1$ normed spaces for the primal unknown and the suboptimal order in $L^2$ normed space for the flux unknown.

A NEW PARANORMED SERIES SPACE USING EULER TOTIENT MEANS AND SOME MATRIX TRANSFORMATIONS

  • Gulec, G. Canan Hazar;Ilkhan, Merve
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.205-221
    • /
    • 2020
  • Paranormed spaces are important as a generalization of the normed spaces in terms of having more general properties. The aim of this study is to introduce a new paranormed space |𝜙z|(p) over the paranormed space ℓ(p) using Euler totient means, where p = (pk) is a bounded sequence of positive real numbers. Besides this, we investigate topological properties and compute the α-, β-, and γ duals of this paranormed space. Finally, we characterize the classes of infinite matrices (|𝜙z|(p), λ) and (λ, |𝜙z|(p)), where λ is any given sequence space.