• 제목/요약/키워드: 2-Phase Matrix Structure

검색결과 139건 처리시간 0.025초

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.

시판치과주조용 고금합금의 물리적 성질 및 상변태 (Physical Property and Phase Transformation in a Commercial Dental Casting High Gold Alloy)

  • 이희경;박명호;이화식
    • 대한치과기공학회지
    • /
    • 제28권1호
    • /
    • pp.27-41
    • /
    • 2006
  • The physical property and phase transformation in a commercial dental casting high gold alloy was investigated as a function of ageing temperature and time using microvickers hardness tester, X-ray diffraction, optical and electron microscopy and EPMA analyser. 1. With increasing ageing time, the hardness of solution-treated gold alloys increased slowly at the initial stage of ageing treatment at an ageing temperature of $300{\sim}400^{\circ}C$, and it reached a maximum value of hardness at the medium stage. Finally, it decreased gradually during further ageing. The maximum value of hardness at was similar with that of the conventional materials and suitable for using as the crown & bridge. 2. During isothermal ageing at a temperature range of $300{\sim}400^{\circ}C$, three phases consisting of the Au-rich ${\alpha}_1$phase with a face-centered cubic structure, the Pt3Zn ${\alpha}_2$phase with an ordered AuCu3(L12) type(f.c.c.) and the Pt-rich ${\alpha}_3$phase with face-centered cubic structure in solution-treated gold alloys were transformed into different three phases consisting of the ${\alpha}_1$phase, the ${\alpha}_3$phase and the PtZn $\beta$phase with an ordered AuCu I(L10) type. 3. The hardening of gold alloys was attributed to the lattice strains of the matrix resulting from the transformation of the ${\alpha}_2$phase to the $\beta$phase. 4. The softening of gold alloys during over-ageing was attributed to the coarsening of the nodules consisting of the $\beta$phase and ${\alpha}_1$matrix.

  • PDF

부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 정적 출력 궤환 적분 가변 구조 제어기 (A Static Output Feedback Integral Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.411-416
    • /
    • 2010
  • In this paper, an integral variable structure static output feedback controller with an integral-augmented sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty and matched input matrix uncertainty and disturbance satisfying some conditions. To effectively remove the reaching phase problems, an output dependent integral augmented sliding surface is proposed. Its equivalent control and ideal sliding mode dynamics are obtained. The previous some limitations is overcome in this systematic design. A stabilizing control with the closed loop exponential stability is designed for all unmatched system matrix uncertainties and proved together with the existence condition of the sliding mode on S=0. To show the usefulness of the algorithm, a design example and computer simulations are presented.

삼중 행렬 곱셈의 효율적 연산 (An Efficient Computation of Matrix Triple Products)

  • 임은진
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.141-149
    • /
    • 2006
  • 본 논문에서는 회로 설계 소프트웨어에서 사용되는 primal-dual 최적화 문제의 해를 구하기 위해 필요한 삼중 행렬 곱셈 연산 ($P=AHA^{t}$)의 성능 개선에 관하여 연구하였다. 이를 위하여 삼중 행렬 곱셈 연산의 속도를 개선하기 위하여 기존의 2단계 연산 방법을 대신하여 1단계 연산 방법을 제안하고 성능을 분석하였다. 제안된 방법은 희소 행렬 H의 블록 대각 구조의 특성을 이용하여 부동 소숫점 연산량을 감소시킴으로써 성능 개선을 이루었으며 더불어 메모리 사용량도 기존 방법에 비하여 50% 이하로 감소하였다. 그 결과 Intel Itanium II 플랫폼에서 기존 2단계 연산 방법과 비교하여 속도 면에서 주어진 실험 데이터 집합에 대하여 평균 2.04 의 speedup을 얻었다. 또한 본 논문에서는 플랫폼의 메모리 지연량과 예측된 캐쉬 미스율을 이용한 성능 모델링을 통하여 이와 같은 성능 개선 수치의 가능 범위를 보이고 실측된 성능개선을 평가하였다. 이와 같은 연구는 희소 행렬의 성능 개선 연구를 기본 연산이 아닌 복합 연산에 적용하는 연구로써 큰 의미가 있다.

  • PDF

2상 복합재료에 있어서 percolation구조의 2차원 컴퓨터 시뮬레이션 (Two-dimensional Computer Simulation of Percolation Structure in Two-Phase Composites)

  • 신순기;이유실;이준희
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.929-935
    • /
    • 2001
  • Two-dimensional computer simulations were conducted on percolation structure in which second phases of various aspect ratios were arranged in a lattice (matrix). The second phases were randomly arranged in an array with two different computational programs; one prohibiting an overlap among second phases and the other allowing the overlap. From the simulation prohibiting the overlap, it was predicted that a complete path was formed at less amounts of the second phase with higher aspect ratios. In the simulation allowing the overlap, a complete path throughout the array was formed by arranging the second phase of an aspect ratio of 1. 5, 20, 100 with less than 59%, 43%, 19%, 4% in the array, respectively.

  • PDF

Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리 (Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy)

  • 박상규;김정석
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

컴퓨터 시뮬레이션에 의한 FRP 복합재료의 도전경로 형성에 미치는 제2상의 영향 (Effect of Second Phase on the Conduction Path Forming in Composites FRP by Computer Simulation)

  • 신순기;임현주;이준희
    • 한국재료학회지
    • /
    • 제13권11호
    • /
    • pp.756-760
    • /
    • 2003
  • Two dimensional computer simulations were conducted on percolative structure in which second phases with various short diameter were arranged in matrix phase. In case of prohibiting the overlap among the second phases, the maximum area fraction of second phase arranged in matrix was increased with higher short diameter. In case of allowing the overlap among the second phases, the critical area fraction was increased with higher short diameter and the total number of distributed second phase was decreased. This results represented that thickness variation of short diameter by grain growth on the production processes affect significantly forming the completion path.

고온자전 합성법에 의해 제조된 TiNiFe합금에서 Incommensurate 상의 형성 (Formation of Incommensurate Phase in TiNiFe Processed by Self-propagating High Temperature Synthesis Method)

  • 조재섭;김도향;김용석
    • Applied Microscopy
    • /
    • 제26권3호
    • /
    • pp.379-388
    • /
    • 1996
  • Structure of premartensite in $Ti_{50}Ni_{49}Fe_1\;and\;Ti_{50}Ni_{50}$ prepared by self-propagating high temperature synthesis (SHS) method has been investigated by a detailed transmission electron microscopy. $Ti_{50}Ni_{49}Fe_1$ consists of microdomain area and needle type domain area. On the other hand, $Ti_{50}Ni_{50}$ consists of microdomain-free and microdomain area, and needle type domain area. Various types of extra superreflections, such as 1/2<100>, 1/2<110> and 1/4<210> type superreflection have been observed in the selected area electron diffractions from microdomain area. Such extra superreflections are due to transformation from B2 structure to distorted B2 structure or premartensite. The present study shows that incommensurate phase forms as an intermediate phase during martensitic transformation. Particularly, in Fe-free $Ti_{50}Ni_{50}$, two types of matrix phases have been observed, microdomain and microdomain-free area. Types of extra superreflections in $Ti_{50}Ni_{50}$ are different from those in $Ti_{50}Ni_{49}Fe_1$, i.e. 1/7<321> type superreflections have been observed, instead of 1/2<110>, 1/2<100>, 1/4<210> types in $Ti_{50}Ni_{49}Fe_1$.

  • PDF

진공 증발법에 의해 제조된 플립 칩 본딩용 솔더의 미세 구조분석 (Microstructure Characterization of the Solders Deposited by Thermal Evaporation for Flip Chip Bonding)

  • 이충식;김영호;권오경;한학수;주관종;김동구
    • 한국표면공학회지
    • /
    • 제28권2호
    • /
    • pp.67-76
    • /
    • 1995
  • The microstructure of 95wt.%Pb/5wt.%Sn and 63wt.%Sn/37wt.%Pb solders for flip chip bonding process has been characterized. Solders were deposited by thermal evaporation and reflowed in the conventional furnace or by rapid thermal annealing(RTA) process. As-deposited films show columnar structure. The microstructure of furnace cooled 63Sn/37Pb solder shows typical lamellar form, but that of RTA treated solder has the structure showing an uniform dispersion of Pb-rich phase in Sn matrix. The grain size of 95Pb/5Sn solder reflowed in the furnace is about $5\mu\textrm{m}$, but the grain size of RTA treated solder is too small to be observed. The microstructure in 63Sn/37Pb solder bump shows the segregation of Pb phase in the Sn rich matrix regardless of reflowing method. The 63Sn/37Pb solder bump formed by RTA process shows more uniform microstructure. These result are related to the heat dissipation in the solder bump.

  • PDF

Microstructural evolution and mechanical properties of TiC-Mo2C-WC-Ni multi-component powder by high energy ball milling

  • Jeong-Han Lee;Hyun-Kuk Park
    • Journal of Ceramic Processing Research
    • /
    • 제22권5호
    • /
    • pp.590-596
    • /
    • 2021
  • The widespread use of TiC-based cermets as cutting tools, thin-film, ultracapacitors, nozzles, and bearings is primarily due to exhibit combination of excellent mechanical properties such as low density, high hardness, and stiffness. The TiC cermets were synthesized by high energy ball milling, which includes binder metal (Ni), carbides (WC and Mo2C), wherein the present study focus on the relationship between the core-rim structure, phase constitution, and mechanical properties. Here, using in situ TEM, we clearly observed the behavior of adjacent core-rim formation from the solid-phase reaction with grain refinement of the TiC phase control of both the milling time and lattice formation. Also, we proposed that mechanically alloyed core-rim structure can affect oxidation resistance of TiC-Mo2C-WC-Ni cermets strongly related to activation energy attributed to TiC particle size. The mechanical properties of TiC-Mo2C-WC-Ni cermets suggest the hardening effect is not considered only grain refinement, but rather is solid solution strengthening and particle-dispersion hardening. The present study paves the relation to the formation behavior of both TiC hard phase and core-rim structure due to the mechanical powder synthesis of novel TiC-based cermets.