Two-dimensional Computer Simulation of Percolation Structure in Two-Phase Composites

2상 복합재료에 있어서 percolation구조의 2차원 컴퓨터 시뮬레이션

  • Shin, Soon-Gi (Division of Metallutgical and Materials, and Chmical Engineering Dong-A University) ;
  • Lee, You-Sil (Division of Metallutgical and Materials, and Chmical Engineering Dong-A University) ;
  • Lee, Jun-Hee (Division of Metallutgical and Materials, and Chmical Engineering Dong-A University)
  • 신순기 (동아대학교 재료금속 화학공학과) ;
  • 이유실 (동아대학교 재료금속 화학공학과) ;
  • 이준희 (동아대학교 재료금속 화학공학과)
  • Published : 2001.11.01

Abstract

Two-dimensional computer simulations were conducted on percolation structure in which second phases of various aspect ratios were arranged in a lattice (matrix). The second phases were randomly arranged in an array with two different computational programs; one prohibiting an overlap among second phases and the other allowing the overlap. From the simulation prohibiting the overlap, it was predicted that a complete path was formed at less amounts of the second phase with higher aspect ratios. In the simulation allowing the overlap, a complete path throughout the array was formed by arranging the second phase of an aspect ratio of 1. 5, 20, 100 with less than 59%, 43%, 19%, 4% in the array, respectively.

Keywords

References

  1. 예를들면官入裕夫, 工業材料, 37(11), 19 (1989)
  2. M.C. Dang and B. Baudelet, J. Mat. Sci., 29, 2315 (1994) https://doi.org/10.1007/BF00363420
  3. V. Sergo and S. Meriani, J. Mat. Sci. Lett., 10, 855 (1991) https://doi.org/10.1007/BF00724759
  4. G.R. Ruschau, S. Yoshikawa and R.E. Newnham, J. Appl. Phys., 72[3], 953 (1992) https://doi.org/10.1063/1.352350
  5. D.S. McLanchlan, M. Blazkiewicz and R.E. Newnham, J. Am. Ceram. Soc., 73[8], 2187 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
  6. Ceramist, 3(4), 5-76 (2000)
  7. 小田垣孝, PARCOLATION科學, 裳華房 (1977)
  8. S. Kirkpatrick, Rev. Mod. Phys., 45, 574 (1973) https://doi.org/10.1103/RevModPhys.45.574
  9. E.A. Holm and M.J. Cima, J. Am. Ceram. Soc., 72[2], 303 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06119.x
  10. I. Balberg and N. Binenbaum, Phys. Rev. B, 28[7], 3799 (1983) https://doi.org/10.1103/PhysRevB.28.3799
  11. M. Miyayama, J. Teramishi and H. Yanagida, J. Matt. Sci., 28, 6442 (1993)
  12. R.P. Kusy, J. Appl. Phys., 48[12], 5301 (1977) https://doi.org/10.1063/1.323560
  13. C. Rajagopal and M. Satyam, J. Appl. Phys., 49[11], 5536 (1978) https://doi.org/10.1063/1.324474
  14. J. Zhang, H. Huang, L. Cao, F. Xia and G. Li, J. Am. Ceram. Soc., 75[8], 2286 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04497.x
  15. M. Takada, S.G. Shin, H. Matsubara, H. Yanagida, J. Jpn. Soc. Comp. Mat., 25[6], 225 (1999)
  16. J. Jpn. Soc. Comp. Mat. v.25 no.6 M. Takada;S.G. Shin;H. Matsubara;H. Yanagida