• Title/Summary/Keyword: 2-P ring

Search Result 683, Processing Time 0.021 seconds

SOME REMARKS ON SKEW POLYNOMIAL RINGS OVER REDUCED RINGS

  • Kim, Hong-Kee
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.275-286
    • /
    • 2001
  • In this paper, a skew polynomial ring $R[x;\alpha]$ of a ring R with a monomorphism $\alpha$ are investigated as follows: For a reduced ring R, assume that $\alpha(P){\subseteq}P$ for any minimal prime ideal P in R. Then (i) $R[x;\alpha]$ is a reduced ring, (ii) a ring R is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring) if and only if the skew polynomial ring $R[x;\alpha]$ is Baer(resp. quasi-Baer, p.q.-Baer, a p.p.-ring).

  • PDF

Effects of atmospheric environmental changes on annual ring growth of Cryptomeria japonica in Southern Korea

  • Luong, Thi-Hoan;Jang, Kyoung-Soo;Choi, Woo-Jung;Lee, Kye-Han
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Annual ring formation is considered a source of information to investigate the effects of environmental changes caused by temperature, air pollution, and acid rain on tree growth. A comparative investigation of annual ring growth of Cryptomeria japonica in relation to environmental changes was conducted at two sites in southern Korea (Haenam and Jangseong). Three wood disks from each site were collected from stems at breast height and annual ring growth was analyzed. Annual ring area at two sites increased over time (p > 0.05). Tree ring growth rate in Jangseong was higher than that in Haenam. Annual ring area increment in Jangseong was more strongly correlated with environmental variables than that in Haenam; annual ring growth increased with increasing temperature (p < 0.01) and a positive effect of $NO_2$ concentration on annual ring area (p < 0.05) could be attributed to nitrogen deposition in Jangseong. The correlation of annual ring growth increased with decreasing $SO_2$ and $CO_2$ concentrations (p < 0.01) in Jangseong. Variation in annual growth rings in Jangseong could be associated with temperature changes and N deposition. In Haenam, annual ring growth was correlated with $SO_2$ concentration (p < 0.01), and there was a negative relationship between precipitation pH and annual ring area (p < 0.01) which may reflect changes in nutrient cycles due to the acid rain. Therefore, the combined effects of increased $CO_2$, N deposition, and temperature on tree ring growth in Jangseong may be linked to soil acidification in this forest ecosystem. The interactions between air pollution ($SO_2$) and precipitation pH in Haenam may affect tree growth and may change nutrient cycles in this site. These results suggested that annual tree ring growth in Jangseong was more correlated with environmental variables than that in Haenam. However, the further growth of C. japonica forest at two sites is at risk from the long-term effects of acid deposition from fossil fuel combustion.

QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS

  • Cui, Jian;Yin, Xiaobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.813-822
    • /
    • 2014
  • A ring R is called quasipolar if for every a 2 R there exists $p^2=p{\in}R$ such that $p{\in}comm^2{_R}(a)$, $ a+p{\in}U(R)$ and $ap{\in}R^{qnil}$. The class of quasipolar rings lies properly between the class of strongly ${\pi}$-regular rings and the class of strongly clean rings. In this paper, we determine when a $2{\times}2$ matrix over a local ring is quasipolar. Necessary and sufficient conditions for a $2{\times}2$ matrix ring to be quasipolar are obtained.

CYCLIC CODES OVER THE RING 𝔽p[u, v, w]/〈u2, v2, w2, uv - vu, vw - wv, uw - wu〉

  • Kewat, Pramod Kumar;Kushwaha, Sarika
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.115-137
    • /
    • 2018
  • Let $R_{u{^2},v^2,w^2,p}$ be a finite non chain ring ${\mathbb{F}}_p[u,v,w]{\langle}u^2,\;v^2,\;w^2,\;uv-vu,\;vw-wv,\;uw-wu{\rangle}$, where p is a prime number. This ring is a part of family of Frobenius rings. In this paper, we explore the structures of cyclic codes over the ring $R_{u{^2},v^2,w^2,p}$ of arbitrary length. We obtain a unique set of generators for these codes and also characterize free cyclic codes. We show that Gray images of cyclic codes are 8-quasicyclic binary linear codes of length 8n over ${\mathbb{F}}_p$. We also determine the rank and the Hamming distance for these codes. At last, we have given some examples.

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

CHOW GROUPS OF COMPLETE REGULAR LOCAL RINGS III

  • Lee, Si-Chang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper we will show that the followings ; (1) Let R be a regular local ring of dimension n. Then $A_{n-2}$(R) = 0. (2) Let R be a regular local ring of dimension n and I be an ideal in R of height 3 such that R/I is a Gorenstein ring. Then [I] = 0 in $A_{n-3}$(R). (3) Let R = V[[ $X_1$, $X_2$, …, $X_{5}$ ]]/(p+ $X_1$$^{t1}$ + $X_2$$^{t2}$ + $X_3$$^{t3}$ + $X_4$$^2$+ $X_{5}$ $^2$/), where p $\neq$2, $t_1$, $t_2$, $t_3$ are arbitrary positive integers and V is a complete discrete valuation ring with (p) = mv. Assume that R/m is algebraically closed. Then all the Chow group for R is 0 except the last Chow group.group.oup.

A PROPERTY OF P-INJETIVE RING

  • Hong, Chan-Yong
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 1992
  • In this paper, some properties of p-injective ring is studied: The Jacobson radical of a pinjective ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Also, the left singular ideal of a ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Finally, we give an example which shows that a semiprime left p-injective ring such that every essential left ideal is two-sided is not necessarily to be strongly regular.egular.

  • PDF

APPROXIMATE RING HOMOMORPHISMS OVER p-ADIC FIELDS

  • Park, Choonkil;Jun, Kil-Woung;Lu, Gang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.245-261
    • /
    • 2006
  • In this paper, we prove the generalized Hyers-Ulam stability of ring homomorphisms over the p-adic field $\mathbb{Q}_p$ associated with the Cauchy functional equation f(x+y) = f(x)+f(y) and the Cauchy-Jensen functional equation $2f(\frac{x+y}{2}+z)=f(x)+f(y)+2f(z)$.

  • PDF

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF