A PROPERTY OF P-INJECTIVE RING

CHAN YONG HONG

In this paper, some properties of p-injective ring is studied: The Jacobson radical of a p-injective ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Also, the left singular ideal of a ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Finally, we give an example which shows that a semiprime left p-injective ring such that every essential left ideal is two-sided is not necessarily to be strongly regular.

All rings R considered here are associative with identity and all modules are unitary. The Jacobson radical of a ring R will be denoted by J(R), the left singular ideal by Z(R), and the socle of an left R-module M by Soc(M). Also, for any subset X of R, I(X) (resp. r(X)) represents the left(resp. right) annihilator of X.

A left ideal of R is said to be essential if it has nonzero intersection with each nonzero left ideal of R. A nonzero left ideal U of R is said to be uniform if each nonzero left ideal of R in U is essential in U. A left R-module M has finite Goldie dimension if M does not contain a direct sum of an infinite number of nonzero submodules.

Lemma 1 [3]. The following conditions are equivalent:

- (a) A ring R satisfies the ascending chain condition on essential left ideals.
- (b) R/Soc(R) is left Noetherian.

Proof. Suppose that R satisfies the ascending chain condition on essential left ideals. Let $A \subseteq B$ be a left ideals of R such that A is essential in B. By Zorn's Lemma, there is a left ideal C of R such that $C \cap A = 0$ and $A \oplus C$ is an essential left ideal of R. Thus $R/(A \oplus C)$ is left Noetherian. Since $B/A \cong B \oplus C/A \oplus C$, B/A is left Noetherian. Also, every uniform left ideal of R is left Noetherian. Now, let D be a left ideal of R which maximal with respect to the condition $D \cap Soc(R) = 0$. Then $D \oplus Soc(R)$ is essential in R and $R/(D \oplus Soc(R))$ is left Noetherian. Hence, for proving that R/Soc(R) is left Noetherian, it suffices to show that D is left Noetherian. We first show that D has finite Goldie dimension. Assume that D contains an infinite direct

^{*} Associate Professor, Department of Mathematics, Kyung Hee University.

sum $X = X_1 \oplus X_2 \oplus \cdots$ of non-zero left ideals X_i . Since $Soc(X_i) = X_i \cap Soc(R) = 0$, each X_i contains a proper essential left ideal Y_i and $Y = Y_1 \oplus Y_2 \cdots$ is essential in X. Thus X/Y is left Noetherian. But this is impossible because $X/Y \cong X_1/Y_1 \oplus X_2/Y_2 \oplus \cdots$ with each X_i/Y_i non-zero. This contradiction shows that D has finite Goldie dimension, n say. Then D contains n independent uniform left ideals U_i such that $U = U_1 \oplus U_2 \oplus \cdots$ is essential in D. By the above, U and D/U are left Noetherian. The converse is clear.

Lemma 2 [Levitzki]. Let R be a left Noetherian ring. Then each nil one sided ideal of R is nilpotent.

Proof. See [2].

Theorem 3. Let R be a ring which satisfies the ascending chain condition on essential left ideals. Then $Z(R) \subseteq J(R)$, and Z(R) is nilpotent.

Proof. Let $x \in Z(R)$. Then l(x) is an essential left ideal of R, and so $Soc(R) \subseteq l(x) \subseteq l(x^2) \subseteq \cdots$. Thus there is an integer $k \ge 1$ for which $l(x^k) = l(x^{k+j})$ for all integers $j \ge 1$. If $ax^k \in Rx^k \cap l(x^k)$ then $ax^{2k} = 0$. Thus $a \in l(x^{2k}) = l(x^k)$, so $ax^k = 0$, i.e., $Rx^k \cap l(x^k) = 0$. Therefore $Rx^k = 0$ since $l(x^k)$ is an essential left ideal of R. Thus $x^k = 0$, so Z(R) is a nil ideal of R. Hence $Z(R) \subseteq J(R)$.

Moreover, (Z(R)+Soc(R))/Soc(R) is a nil ideal of R/Soc(R). Since R/Soc(R) is left Noetherian by Lemma 1, (Z(R)+Soc(R))/Soc(R) is nilpotent by Lemma 2. Thus $(Z(R))^t \subseteq Soc(R)$ for some integer $t \ge 1$. Since $Z(R) \subseteq J(R)$ and J(R) annihilates all simple left R-modules, $(Z(R))^{t+1} = 0$.

A ring R is called to be left p-injective if for any principal left P of R and left R-module homomorphism $g: P \to R$, there exists $y \in R$ such that g(b) = by.

Lemma 4. A ring R is left p-injective if and only if every principal right ideal of R is a right annihilator.

Proof. First, we assume that a ring R is left p-injective. Since a map $f: Ra \to R/l(a)$ defined by f(xa) = x + l(a) is a left R-module isomorphism, $Ra \cong R/l(a)$ as left R-module. Suppose that $b \in r(l(a))$. Then $l(b) \supseteq l(r(l(a))) = l(a)$. Thus this induces a left R-module epimorphism $R/l(a) \to R/l(b)$ given by $x + l(a) \longmapsto x + l(b)$. Therefore $g: Ra \to Rb$ defined by g(xa) = xb is a left R-module epimorphism. Since R is left p-injective, there exists $y \in R$ such that b = g(a) = ay. Thus $b \in aR$, so $r(l(a)) \subseteq aR$. Therefore $aR \subseteq r(l(aR)) = r(l(a)) \subseteq aR$, so r(l(a)) = aR. Hence aR is a right annihilator.

Conversely, let h be a left R-module homomorphism of Ra into R. Then $l(a) \subseteq l(h(a))$ Thus, by hypothesis, $h(a)R = r(l(h(a)R)) \subseteq r(l(a)) = r(l(aR)) = aR$. Therefore there exists $c \in R$ such that h(a) = ac. Hence R is left p-injective.

Theorem 5. Let R be a left p-injective ring which satisfies the ascending chain condition on essential left ideals. Then J(R) is nilpotent.

Proof. Let $x \in J(R)$. Suppose that $t \in R$ with $Rt \cap l(x) = 0$. If $z \in l(tx)$, then ztx = 0. Thus $zt \in l(x)$. Since $zt \in Rt \cap l(x) = 0$, zt = 0, i.e., $z \in l(t)$. Therefore l(tx) = l(t), i.e., l(txR) = l(tR). By lemma 4, txR = r(l(txR)) = r(l(tR)) = tR. Thus txr = t for some $r \in R$, so t(1 - xr) = 0. Since $xr \in J(R)$, 1 - xr is invertible, and so t = 0. Therefore l(x) is an essential left ideal, so $x \in Z(R)$. Thus $J(R) \subseteq Z(R)$. Since Z(R) is nilpotent by Theorem 3, J(R) is nilpotent.

In fact, Z(R) = J(R) in this case.

Corollay 6. Let R be a left p-injective ring which satisfies the ascending chain condition on essential left ideals. Then every nil left or right ideal is nilpotent.

Let $Nil^*(R)$ be the upper nil radical of R, i.e., Nil^*R is the sum of all nil ideals of R. Then $Nil^*R = J(R)$ in this case. Thus if $Nil^*R = 0$, then R has no nonzero nil one-sided ideal, i.e., Kothe conjecture holds for a left p-injective ring which satisfies the ascending chain condition on essential left ideals.

The following proposition is one of other properties of a left p-injective ring.

Proposition 7. Let R be a ring satisfying the condition (*): for left ideals I and J of R, $I \cap J = 0$ implies IJ = 0. Then the followings are equivalent.

- a) R is a strongly regular ring.
- b) R is a semiprime left p-injective ring such that every essential left ideal is two-sided.
- c) R is a left nonsingular left p-injective ring.

Proof. See [4].

Related to this Proposition 7, we may ask whether this proposition hold without the condition (*) or not. However, this proposition does not hold without an extra condition. The following example shows that this proposition does not hold without an extra condition such as (*).

Example 8. Let Q be a ring of all rational numbers. Let $R = \begin{pmatrix} Q & Q \\ Q & Q \end{pmatrix}$, and e_{ij} $(1 \le i, j \le 2)$ be matrix units. Then R is a semiprime ring. The non-zero left ideals of R are R, $Qe_{11} + Qe_{21}$, $Qe_{12} + Qe_{22}$, $I_k = Q(ke_{11} + e_{12}) + Q(ke_{21} + e_{22})$, and $I'_t = Q(e_{11} + te_{12}) + Q(e_{21} + te_{22})$, where $k, t \ne 0$ $\in Q$. The essential left ideal is only R. Thus every essential left ideal of R is two-sided. The non-zero proper right ideals of R are $Qe_{11} + Qe_{12}$, $Qe_{21} + Qe_{22}$

 $J_k = Q(ke_{11} + e_{21}) + Q(ke_{12} + e_{22})$, and $J'_t = Q(e_{11} + te_{21}) + Q(e_{12} + te_{22})$, where $k, t \neq 0$ $0 \in Q$. Since $Q(e_{11} + Qe_{12}) = r(e_{12})$, $Q(e_{21} + Qe_{22}) = r(e_{11})$, $Q(e_{11} + e_{11})$, and $Q(e_{11} + e_{11})$, $Q(e_{$

REFERENCES

- [1] E.P. Armendariz, Rings with dcc on essential left ideals, J. Comm. Algebra vol 8, 1980, 299-308
- [2] A.W. Chatters and C.R. Hajarnavis, Rings with chain conditions, Pitman Advanced Publishing Program, Boston, 1980
- [3] N.V. Dung, D.V. Huynh and R. Wisbauer, Quasi-injective modules with acc or dcc on essential submodules, J. Arch. Math. vol 53, 1989, 252-255
- [4] J.Y. Kim and J.K. Park, On reduced rings and generalized duo ring.

DEPARTMENT OF MATHEMATICS, KYUNG HEE UNIVERSITY, SEOUL, 130-701, KOREA