• 제목/요약/키워드: 2-Dimensional Surface Crack

검색결과 50건 처리시간 0.035초

노즐 이종금속용접부의 내면 보수용접부에서 수치해석법을 이용한 PWSCC 균열성장해석 (PWSCC Crack Growth Analysis Using Numerical Method in the Inner Surface Repair Weld of A Nozzle)

  • 김상철;김만원
    • Journal of Welding and Joining
    • /
    • 제29권2호
    • /
    • pp.64-71
    • /
    • 2011
  • In this paper, crack propagation analyses in the inner diameter (ID) repair weld of the dissimilar metal weldment of a nozzle were performed using a finite element alternating method (FEAM). To calculate the theoretical solution for the crack tip stress intensity factor, a weak type singular integral equation consisted of crack surface traction and dislocation density function was constructed and solved in conjunction with the FEAM. A two-dimensional axisymmetric finite element nozzle model was prepared and ID repair welding was simulated. An initial crack, 10% depth of weld thickness, was assumed and crack propagation trajectory from the initial crack to the 75% depth of thickness was calculated using the FEAM. Crack growth versus time curve was also calculated and compared with the curves obtained from ASME code method. With the method constructed in this paper, crack propagation trajectory and crack growth time were calculated automatically and effectively.

Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch

  • Merzoug, Mohamed;Boulenouar, Abdelkader;Benguediab, Mohamed
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.209-216
    • /
    • 2017
  • In this paper, the analysis of the behavior of surface cracks in finite-thickness plates repaired with a Boron/Epoxy composite patch is investigated using three-dimensional finite element methods. The stress intensity factor at the crack-front was used as the fracture criteria. Using the Ansys Parametric Design Language (APDL), the stress intensities at the internal and external positions of repaired surface crack were compared. The effects of the mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor at the crack-front were examined.

내압이 작용하는 원통형용기에 대한 축방향 표면결함의 응력확대계수 계산방법 비교 (Comparison of Stress Intensity Factors for Longitudinal Semi-elliptical Surface Cracks in Cyclindrical Pressure Vessels)

  • 문호림;장창희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.622-627
    • /
    • 2001
  • The object of this paper is to compare stress intensity factor that be calculated by Raju-Newman's equation, finite element method, and Vessel INTegrity analysis inner flaws(VINTIN) program for longitudinal semi-elliptical cracks in cylindrical vessel under inner pressure. For this, three-dimensional finite-element analyses were performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The finite element meshes were designed for various crack shapes with t/R of 0.1. The crack depth to thickness ratio, a/t, was set to 0.2 and 0.5 matching Raju-Newman's equation. The crack depth to length ratio, a/c, was set to 0.2 and 0.4 in the same way and 0.33 was added to extend the range of crack configuration. Finite Element Analyses(FEA) were performed using the commercial FEA program ABAQUS. The results showed that the Raiu-Newman solutions were about 4-10% lower than FEA's using symmetric model of one-eighth of a vessel and close to those of FEA using symmetric model or one-forth or a vessel. Ana VINTIN solutions were nearly equal to those or Raju-Newman.

  • PDF

Numerical Fracture analysis of prestressed concrete beams

  • Rabczuk, Timon;Zi, Goangseup
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.153-160
    • /
    • 2008
  • Fracture of prestressed concrete beams is studied with a novel and robust three-dimensional meshfree method. The meshfree method describes the crack as a set of cohesive crack segments and avoids the representation of the crack surface. It is ideally suited for a large number of cracks. The crack is modeled by splitting particles into two particles on opposite sides of the crack segment and the shape functions of neighboring particles are modified in a way the discontinuous displacement field is captured appropriately. A simple, robust and efficient way to determine, on which side adjacent particles of the corresponding crack segment lies, is proposed. We will show that the method does not show any "mesh" orientation bias and captures complicated failure patterns of experimental data well.

세라믹 접합부재에 대한 파괴역학인자 및 파면 해석 (Analysis of Fracture Mechanics Parameter and Fracture Surface in Bonded Ceramic Joints)

  • 김기성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, attempts have been made to be join ceramics to metals in order to make up for the brittleness of ceramics. The difference in the coefficients of linear expansion of the two materials joined at high temperature will cause residual stress, which has a strong influence on the strength of the bonded joints. In this paper, the residual stress distribution and stress intensity factors of the ceramic/metal bonded joints were analyzed by 2-dimensional elastic boundary element method. Fracture toughness tests of ceramic/metal bonded joints with an interface crack were carried out. So the advanced method of quantitative strength evaluation for ceramic/metal bonded joints is to be suggested. Fracture surface and crack propagation path were observed using scanning electron microscope.

  • PDF

CNN 모델을 활용한 콘크리트 균열 검출 및 시각화 방법 (Concrete Crack Detection and Visualization Method Using CNN Model)

  • 최주희;김영관;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2022
  • Concrete structures occupy the largest proportion of modern infrastructure, and concrete structures often have cracking problems. Existing concrete crack diagnosis methods have limitations in crack evaluation because they rely on expert visual inspection. Therefore, in this study, we design a deep learning model that detects, visualizes, and outputs cracks on the surface of RC structures based on image data by using a CNN (Convolution Neural Networks) model that can process two- and three-dimensional data such as video and image data. do. An experimental study was conducted on an algorithm to automatically detect concrete cracks and visualize them using a CNN model. For the three deep learning models used for algorithm learning in this study, the concrete crack prediction accuracy satisfies 90%, and in particular, the 'InceptionV3'-based CNN model showed the highest accuracy. In the case of the crack detection visualization model, it showed high crack detection prediction accuracy of more than 95% on average for data with crack width of 0.2 mm or more.

  • PDF

열응력, 내력 및 균열 경계하중을 고려한 2차원 균열문제의 에너지방출율 (The Energy Release Rate of the Two Dimensional Cracked Body Under Thermal Stresses, Body Forces and Crack-Face Tractions)

  • 이태원
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2172-2180
    • /
    • 1993
  • Under general loadings, including body forces, crack-face tractions and thermal loading, the energy release rate equation for a two-dimensional cracked body is presented. Defining the virtual crack extension as the variation of the geometry, the equation is directly derived by a shape design sensitivity of the potential energy. Although the form of the derived energy release rate equation is different from other researchers's results, the three example show that the former is exactly the same as the latter. However, the final integral equation do not involve the derivative of the displacement on the crack surface and crack tip region, thereby improving the numerical accuracy in the computation of the energy relase rate. Moreover, as it was derived from the governing equation including non-linear elasticity without special assumptions, the energy release rate of a elasto-plastic fracture can be obtained and any numerical stress analysis method can be applied.

연성재료의 균열진전에 따른 A2의 변화; 실험적 측정 (Variation of A2 with Crack Propagation in a Ductile Metal; Experimental Evaluation)

  • 김헌중;김동학;양경진;강기주
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.119-125
    • /
    • 2003
  • A way to measure the second parameter $A_2$of CT specimens is described. The displacement $\delta$$_{5}$ which is measured continuously from visual images of the lateral surface during crack growth is used to calculate the A, as a function of crack growth. The crack length is measured by DCPD(Direct Current Potential Drop) method and the J-resistance curve is determined according to ASTM standard E1737-96. To prove the validity of this method, three dimensional finite element analyses were performed, and variations of the displacements $\delta$$_{5}$ and $A_2$along the thickness were explored. As the result, it has been shown that the $\delta$$_{5}$ measured from the visual images of the lateral surface and the corresponding $A_2$can be regarded as the average through the thickness for 1T and 1/2T specimens of SA106Gr.C steel.steel.

접촉피로에 있어서 균열의 발생과 진전특성 (Characteristic of Crack Growth and Progress on the Contact Fatigue (In a case of Metal))

  • 유성근
    • 한국재료학회지
    • /
    • 제7권1호
    • /
    • pp.62-68
    • /
    • 1997
  • 본 연구에서는 접초피로에 있어서 균열의 발생, 진전 등의 관찰을 위해, 균열의 발생, 진전 등이 2차원적으로 되어 시험편측면에서 관찰이 가능한 평판 ring형 시험편을 이용하여 반복수 증대에 따른 균열의 발생, 진전과정을 조사하였다. 그 결과 pitting, flaking형 파손의 초기손상은 접촉면하의 내부에 생기는 접촉면에 평행방향의 균열에 의해 일어나며, 이 균열은 그 방향 밀 파면형태에 의해 접촉응력이 접촉면에 평행방향의 전단응력성분에 의한 모드 ll 피로진전과의 차는 중첩부하된 압축응력의 유무라고 생각되며, 이 가저에 근거로 하여 재료고유의 모드 ll 피로균열진전특성을 구할 수 있는 장치를 개발하였다. 이 장치를 이용하여 알루미륨합금 및 공구강에 대한 da/dN-${\Delta}k$ ll 관계의 시험결과를 얻었다.

  • PDF

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.