• Title/Summary/Keyword: 2-2 Composite

Search Result 9,421, Processing Time 0.026 seconds

Characterization of composite prepared with different mixing ratios of TiO2 to activated carbon and their photocatalytic activity

  • Chen, Ming-Liang;Bae, Jang-Soon;Ko, Young-Shin;Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.376-382
    • /
    • 2006
  • In this work, pitch/activated carbon/$TiO_2$ composite were prepared by $CCl_4$ solvent method with different mixing ratios. The BET surface area of pitch/activated carbon/$TiO_2$ composite has a significantly increase with increasing activated carbon content in pitch/activated carbon/$TiO_2$ composite. The surface structure and elemental compositions of the composite were studied by SEM and EDX, respectively. The SEM results were presented to the characterization of porous texture on the pitch/activated carbon/$TiO_2$ composite. And EDX data was shown the presence of C, O, S, Ti and other elements. The structural properties of the composite were studied in XRD measurements. The $TiO_2$ crystal phases of the pitch/activated carbon/$TiO_2$ composite had lots of rutile-type structure which transforms from anatase-type with a little of anatase-type structure. The photocatalytic activities of the composite were evaluated using a photo-decomposition method under UV lamp. The pitch/activated carbon/$TiO_2$ composites were observed better photocatalytic activity than that of pristine $TiO_2$.

Charge/discharge Properties of $V_2O_5$-AC Composite for Supercapacitor (Supercapacitor용 $V_2O_5$-AC Composite의 충방전 특성)

  • 김명산;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.366-369
    • /
    • 1999
  • The purpose of this study is to research and develop V2Os-AC(activated carbon) composite electrode for supercapacitor. Supaercapacitor cell of V2Os-AC composite electrode with 25P70FLiCIO$_{4}$/PC$_{10}$/EC$_{10}$ polymer electrolyte bring out good capacitor Performance below 3V. The discharge capacitance of V2Os-AC(30:70) composite with 70wt.% AC in 1st and 200th cycles was 9.6 and 8.2 F/g at current density of 1m7/cm2. The capacitance of V$_2$O$_{5}$-AC composite with 70wt.% AC capacitor was larger than that of others. The coulombic efficiency of supercapacitor at discharge process of 1 and 200 cycles were 96 and 100%, respectively. V$_2$O$_{5}$-AC composite supercapacitor with 70wt.% AC content showed good capacitance and stability with cycling.ing.ing.

  • PDF

Separation of H2 and N2 Gases by PTMSP-NaA Zeolite Composite Membranes (PTMSP-NaA Zeolite 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Kim, Ok-Su;Yun, Seok Il
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • PTMSP-NaA zeolite composite membranes were prepared by adding 0~50 wt% NaA zeolite to PTMSP. The membranes were characterized by FT-IR, $^1H$-NMR, GPC, DSC, TGA, SEM. The permeabilities of $H_2$ and $N_2$ gases through PTMSP-NaA zeolite composite membranes was studied as a function of NaA zeolite contents. According to TGA measurements, when zeolite was inserted into the polymer, weight loss temperature and weight loss wt% of PTMSP-NaA zeolite composite membranes were decreased. Based on SEM observation, NaA zeolite was dispersed in the PTMSP-NaA zeolite composite membrane with the size $2{\sim}5{\mu}m$. The permeability of PTMSP-NaA zeolite composite membranes increased added as NaA zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as NaA zeolite content increased. PTMSP-NaA zeolite composite membrane showed better permeability and selectivity ($H_2/N_2$) of $H_2$ and $N_2$ than PTMSP-NaY zeolite composite membrane.

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Synthesis and Characterization of Zeolite Composite Membranes (II): Synthesis and $CO_2$ Separation Efficiency of ZSM-5 Zeolite Composite Membranes (제올라이트 복합 분리막의 합성 및 특성화(II): ZSM-5 제올라이트 복합막의 합성 및 $CO_2$ 분리 효율)

  • 현상훈;송재권;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.747-757
    • /
    • 1997
  • ZSM-5 zeolite composite membranes have been synthesized from a silica sol solution containing TPABr as an organic template by the dip-coating and the pressurized-coating hydrothermal treatment techniques. The CO2 separation efficiency of synthesized composite membranes was also investigated. The permeation mechanism of CO2 through ZSM-5 membranses was the surface diffusion, and that of N2, O2, and He gases was Knudsen diffusion or activated diffusion depending on the synthetic method of membranes and the measurement temperature. The CO2/N2 separation factor of the membrane prepared by the dip-coating hydrothermal treatment was 2.5 at about 12$0^{\circ}C$, while the ZSM-5 composite membrane synthesized by the pressurized-coating hydrothermal treatment technique showed the CO2/N2 separation factor of 9.0 at room temperature higher than that ever reported in the literature.

  • PDF

The Effects of Second Phases on the Photocatalytic Characteristics of the TiO2 base Nano Composite (TiO2계 나노 복합촉매 특성에 미치는 생성상의 영향)

  • 안인섭;고봉석;배승열
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • In the present study, $TiO_2$ imbedded composite powders have been successfully prepared from the (Cu. Zn)/$TiO_2$ composite salt solution. The composite (Cu, Zn)/$TiO_2$ powders were formed by drying the solution at 200~$600^{\circ}C$ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting the decomposition ratio of aniline blue with UV-visible spectrophotometer(Shimazu Co., UV-1601). Phase analysis of (Cu, Zn)/$TiO_2$ composite powders was carried out by XRD and DSC, and powder size was measured with TEM. The mean particle size of composite powders was about 100mm. As the reduction temperature increases, a few zinc sulfide and oxide phases was formed and copper oxide phase was reduced. The decomposition ratio of aniline blue was about 80% under the UV irradiation by the TiO$_2$ phase in the composite (Cu, Zn)/$TiO_2$ powders and similar decomposition ratio of 80% was obtained at the UV lightless condition by virtue of Cu and Zn compounds.

Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$ : (II) Composite Powders of $Al_2O_3$-$TiO_2$ ($Al_2O_3$ 로 피복시킨 세라믹 복합분체의 제조 및 특성 : (II) $Al_2O_3$-$TiO_2$ 복합분체)

  • 현상훈;정형구
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.338-346
    • /
    • 1991
  • The alumina-titania composite powders coated with Al2O3 were prepared by the method of hydrolysis-deposition of mixed aluminium salt solution of Al2(SO)4-Al(NO3)3-Urea. The effects of coating-process parameters on the characteristics of coated composite powders were also investigated. As the content of TiO2 dispersed in deionized water increased, the coated composite powders were found to be more uniform in size and unagglomerated. When TiO2 powders were coated for 30 min, the optimum TiO2 content in the coating process was 400 mg/ι. The size of TiO2 particle was increased approximately from 0.7${\mu}{\textrm}{m}$ to 1.0${\mu}{\textrm}{m}$ through coating of Al2O3. The IEP of coated composite powders was pH=8.3 identical to the value of aluminium hydroxides and the zeta-potential showed nearly similar values each other. When heat treating coated composite powders at 130$0^{\circ}C$, only two phases of TiO2(rutile) and Al2TiO5 were observed. These results showed that the suface of TiO2 could be uniformly coated with the aluminium hydroxide.

  • PDF

Fabrication of $Al_2O_3/SiC$ Composite Through Oxidation of SiC (SiC의 산화에 의한 $Al_2O_3/SiC$ 복합체의 제조)

  • 김경환;이홍림;이형민;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.535-543
    • /
    • 1997
  • The surface of SiC particles were partially oxidized to produce SiO2 layers on the SiC particles to prepare Al2O3/SiC composite by formation of mullite bonds between the grains of Al2O3 and SiC during sintering at 1$600^{\circ}C$. This process is considered to enable the sintering of Al2O3/SiC composite at lower temperature and also to relieve the stress, produced by thermal expansion mismatch between Al2O3 and SiC. In fact, Al2O3/SiC composite prepared by oxidation of SiC was observed to be more effectively sintered and densified at lower temperature. Maximum density, flexural strength and microhardness were obtained with 5.65 vol% of mullite content in Al2O3/SiC composite.

  • PDF

Analysis of Toughening Mechanism of Ceramic Composites by Acoustic Emission (AE(Acoustic Emission)에 의한 세라믹 복합재료의 고인성화 기구 분석)

  • 장병국
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1129-1138
    • /
    • 1997
  • Al2O3/20 vol%YAG composite containing equiaxed grains and Al2O3/20 vol%LaAl11O18 composite containing elongated grains were fabricated using Al2O3-Y2O3 composition and Al2O3-La2O3 composition, respectively, by hot-pressing. In order to investigate the influence of microstructural control of second phase on toughening effect of toughened ceramic composites, AE (acoustic emission) measurements have been coupled with fracture toughness experiments(SENB and SEPB method). A separation of the fracture toughness and analysis of toughening mechanism was possible using the AE technique. The fracture toughness of hot-pressed materials was estimated to be 3.2 MPam0.5 for monolithic alumina, 4.7 MPam0.5 for Al2O3/20 vol%YAG composite and 6.2 MPam0.5 for Al2O3/20 vol%LaAl11O18 composite. In monolithic Al2O3, toughening does not occur as a result of either microcracking or grain bridging, whereas, composites exhibit toughening effects by both microcracking in the frontal zone and gain bridging in the wake zone, resulting in an improvement of fracture toughness as compared with monolithic Al2O3. The fracture toughness of Al2O3/20 vol%LaAl11O18 composite is higher than that of Al2O3/20 vol%YAG composite. It may be attributed to the elongated microstructure of Al2O3/20 vol%LaAl11O18 composite, resulting relatively greater bridging effect.

  • PDF

Photocatalysis Characteristics of Nano Cu/TiO2 Composite Powders Fabricated from Salt Solution (염용액으로부터 제조된 Cu/TiO2복합분말의 광촉매 특성)

  • 고봉석;안인섭;배승열;이상진
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.136-141
    • /
    • 2003
  • In the present study, $TiO_2$ imbedded copper matrix powders have been successfully prepared from the ($CuSO_4+TiO_2+Zn$) composite salt solution. The composite $Cu/TiO_2$ powders were formed by drying the solution at $200{\sim}~400^{\circ}C$ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting TOC (total organic carbon) amount with TOC analyzer (model 5000A Shimadzu Co). Phase analysis of $Cu/TiO_2$ composite powders was carried out by XRD, DSC and powder size was measured with TEM. The mean particle size of composite powders was about 100 nm and a few zinc and copper oxide phases was included. The reduction ratio of TOC amount was 60% by the composite $Cu/TiO_2$ powders under the UV irradiation for 8 hours.