• Title/Summary/Keyword: 2차원 9방향

Search Result 198, Processing Time 0.028 seconds

A Study on the Implications and Trends of Logistics Security Assurance Programs for International Trade Facilitation (국제물류보안 인증제도 동향 및 시사점에 관한 연구)

  • Ko, Hyun-Jeung
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.2
    • /
    • pp.333-354
    • /
    • 2011
  • After the terrorist attack of 9/11 on the USA, the security concern to global trade has been raised. In particular, the USA has actively promoted a series of initiatives and rules such as CSI, 24 hour rule, C-TPAT, and so on in the area of logistics activities, which aimed to better protect the country against the potential terrorist threats. While implementing such schemes called as a multi-layed logistics security strategy, a large number of countries trading with USA are facing with the issues of additional time and costs for inspecting cargos in their logistics facilities. As a result, most countries all over the world have sought a way to minimize the impacts from such strategy. The Korea also is preparing the several security programs operated by various ministries, which are aiming to not only improve the efficiency of trade flows but also to ensure supply chain security. However, many companies are expressing the inefficiency of operating such programs. Thus, this paper analyzed several global supply chain security programs currently adopted by international organizations(ISO, WCO, and IMO) and major countries(USA, EU, and Singapore) and suggested a guideline for developing the national logistics security system.

Design of 3-D resonator for improvement of interference in ETCS (ETCS 신호 간섭 개선을 위한 3-D 공진기 설계)

  • Kim Ho-Yong;Lee Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.99-104
    • /
    • 2006
  • In this paper, the conventional 2 dimensional metamaterial structure has degeneration of shielding characteristic in cross polarization effect. The proposed 3-D resonator is designed for reduction of cross polarization effect. The proposed 3-D resonator using LTCC consists of 2-D parallel resonators on X-axis, Y-axis and Z-axis. The 2-D parallel resonator consists of two plate and one via. When the co-polarization electric filed is excited, the resonance frequency of 3-D resonator is 5.024GHz. The stop bandwidth is 19MHz. When the cross-polarization electric field is excited, the resonance frequency of 3-D resonator is 4.825GHz. The stop bandwidth is 19MHz. The proposed 3-D resonator achieve reduction of cross-polarization effect. The concrete consists of proposed 3-D resonator and absorbtion materials. The concrete will be applied for reduction or interference signal of ETCS(Electric Toll collection system).

Surface Reconstruction Using CORONA KH-4 Imagery (CORONA KH-4 영상을 이용한 3차원 지형정보 취득)

  • Sohn, Hong-Gyoo;Yeu, Bock-Mo;Kim, Gi-Hong;Choi, Jong-Hyun
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.145-149
    • /
    • 2002
  • CORONA는 미국이 1960년에서 1972년까지 냉전시대 관심지역에 대한 첩보영상을 취득하기 위하여 운영한 영상취득시스템으로 1995년 일반에 자료가 공개됨에 따라 과거의 고해상도 영상자료를 이용할 수 있는 길이 열리게 되었다. 그러나 현재까지 CORONA 영상처리를 위한 모듈을 제공하는 원격탐측 소프트웨어가 개발되어 있지 않기 때문에 CORONA 영상을 이용하여 수치표고모형이나 정사영상을 제작하기 위해서는 적절한 모델링 방법이 필요하다. CORONA 영상은 파노라마 영상으로 필름 가장자리로 갈수록 왜곡이 많이 생기며 사진기 지표가 없고 위성의 궤도와 위치, 자세, 속도, IMC(Image Motion Compensation)에 대한 자세한 자료를 제공하지 않는 문제점이 있다. 따라서 본 논문에서는 지형복원을 위하여 지상기준점을 이용하는 2가지 모델링 방법을 이용하였다. 첫 번째는 파노라마 왜곡과 촬영 비행체 이동에 의한 왜곡, IMC에 의한 왜곡을 보정하는 모형식을 구성하여 이용하였으며, 두 번째는 위성과 센서에 대한 정보를 필요로 하지 않는 다항식비례모형(RFM; Rational Function Model)을 이용하였다. 대상지역은 서울지역의 입체영상으로 대략 $33km{\times}26km$ 지역이다. 영상은 지상해상도 약 2.7m로 스캐닝하였고 1:1000 수치지도를 통해 20개의 기준점과 36개의 검사점을 관측하였다. 검사점의 위치정확도를 평가해 본 결과 첫 번째 방법은 수평방향으로 평균 3.9m(X), 2.8m(Y)의 오차를 보였으며 표고의 경우 4.2m의 오차를 보여주었다. 두 번째 방법은 수평방향으로 평균 3.2m(X), 2.8m(Y)의 오차를 보였으며 표고의 경우 5.5m의 오차를 보여주었다. 지형복원 정확도를 검증하기 위하여 첫 번째 방법을 이용하여 대상지역 중 일부인 서울 남산지역에 대해 정사영상과 10m간격의 DEM을 제작하였으며 1:1000 수치지도를 통해 제작된 DEM과 비교한 결과 총 43990개 격자점의 표고 차이는 평균 5.98m였다.

  • PDF

Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data (다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석)

  • Park, Soyeon;Choi, Yoonjo;Bae, Junsu;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1013-1025
    • /
    • 2020
  • Unmanned Aerial Vehicle (UAV) platform is being widely used in disaster monitoring and smart city, having the advantage of being able to quickly acquire images in small areas at a low cost. Ground Control Points (GCPs) for positioning UAV images are essential to acquire cm-level accuracy when producing UAV-based orthoimages and Digital Surface Model (DSM). However, the on-site acquisition of GCPs takes considerable manpower and time. This research aims to provide an efficient and accurate way to replace the on-site GNSS surveying with three different sources of geospatial data. The three geospatial data used in this study is as follows; 1) 25 cm aerial orthoimages, and Digital Elevation Model (DEM) based on 1:1000 digital topographic map, 2) point cloud data acquired by Mobile Mapping System (MMS), and 3) hybrid point cloud data created by merging MMS data with UAV data. For each dataset a three-dimensional positional accuracy analysis of UAV-based orthoimage and DSM was performed by comparing differences in three-dimensional coordinates of independent check point obtained with those of the RTK-GNSS survey. The result shows the third case, in which MMS data and UAV data combined, to be the most accurate, showing an RMSE accuracy of 8.9 cm in horizontal and 24.5 cm in vertical, respectively. In addition, it has been shown that the distribution of geospatial GCPs has more sensitive on the vertical accuracy than on horizontal accuracy.

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.

Behavior for 2 Ply Rubber/Cord Laminates (2층 고무/코드 적층판의 층간거동)

  • 이윤기;임동진;윤희석;김민호;김춘휴
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • 2 ply laminated composite is regarded to simulate the interply behavior of the belt layer of the tire. It was cone with 3 dimensional FE(Finite Element) analysis to determine interply shear stress and strain. Widthwise, the shear strain was measured by the pin method. These results are compared with those of CLT(classical lamination theory) in center region and those of Kassapoglou's and Kelsey's theory in edge region. In the FE analysis. rubber is assumed as linear elastic material. and rubber/cord laminate as the orthotropic material composed of cord and rubber In the FE result, interlaminar shear stress causing the interlaminar delamination has the largest value in the edge region of the inner rubber layer. Numerical results obtained coincides with CLT well in the center region, and agrees with other theoretical result little in the edge region.

Longitudinal Arching Characteristics Around the Face of a Soil-Tunnel with Crown and Face-Reinforcement (굴진면 천단 및 수평보강에 따른 굴진면 전후의 종방향 아칭 특성)

  • Kwon Oh-Yeob;Choi Yong-Ki;Lee Sang-Duk;Kim Young-Gun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.133-144
    • /
    • 2004
  • Pre-reinforcement ahead of a tunnel face using long steel or FRP (Fiberglass Reinforced Plastic) pipes in NATM(New Austrian Tunnelling Method), known as the RPUM(Reinforced Protective Umbrella Method) or UAM (Umbrella Arch Method), is the promising method to sustain the stability of a shallow tunnel face and reduce the ground settlements. In addition, horizontal reinforcing of the face is recently emphasized to improve the stability of the face. However, the characteristics on longitudinal arching around the face have not yet been established quantitatively with the RPUM (crown-reinforcing) and/or the face horizontal reinforcing. In this study, therefore, the behavior of cohesionless soil around the face reinforced by the reinforcing member representing the RPUM and horizontal reinforcing is investigated through two-dimensional laboratory model tests. A series of tests were carried out on various conditions by changing lengths and angles of the reinforcing members. Based on the vertical pressure around the face, the characteristics of longitudinal arching have been found for the case of the non-reinforced and the reinforced.

Fracture Characteristics and Segmentation of Yangsan Fault around Mt. Namsan, Gyeongju City, Korea (경주 남산 일대의 단열구조 특성과 양산단층의 분절)

  • Kim, Heon-Joo;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • Fractures and segmentation in association with the activities of the Yangsan fault are studied around Mt. Namsan, Gyengju city in the southeastern part of Korea. It is believed that the higher values of joint density and fractal dimension with the approach of the center of the Yangsan fault mean intense fracturing due to the fault activity. The boundary between fault damage zone and host rock is inferred to be placed at about 2.7 km from the center of the Yangsan fault where the values of joint density and fractal dimension abruptly decrease and the orientations of joint are also much dispersed. The small faults within the damage zone of the Yangsan fault are definitely divided into right-lateral and left-lateral strike-slip faults. The former is considered to be formed during the right-lateral movement of the Yangsan fault and the latter during the left-lateral movement. The Yangsan fault is segmented in the study area with obvious evidences as follows: (1) the difference of fault strike between northern and southern segments, (2) The geometry of contractional imbricate fans and syncline plunging $9^{\circ}$, $S85^{\circ}E$ at the end of northern segment, and (3) anticline plunging $28^{\circ}$, $N4^{\circ}W$ at the end of southern segment.

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.

Numerical Computation of Unsteady Flow in a Cavity Induced by an Oscillatory External Flow (외부유동에 의한 캐버티 내의 비정상 유동에 대한 수치계산)

  • Yong kweon Suh;Park, Yoon-Hwan;Park, Jun-Gwan;Moon, Jong-Ghoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.194-200
    • /
    • 1997
  • A two-dimensional shallow-water flow around a cavity driven by a sinusoidally oscillating external flow was studied numerically. A container model of "T" shape was constructed in the numerical computation for comparison with the experimental observation. The numerical computation shows that the aspect ratio of the cavity is not much affecting the overall flow pattern, and for the aspect ratio 2, the deep region of the cavity has a stagnant flow motion. At larger Reynolds number, the flow field is characterized by many small vortices which are not present in the flow visualization. The flow pattern in the external region is in good agreement with the experimentally recorded particle trajectories. It turns out that two large coherent vortices situated in the exterior region of the cavity are responsible for clockwise and counterclockwise drift motions, in large scale, of particles.particles.

  • PDF