• Title/Summary/Keyword: 2원 사이클

Search Result 77, Processing Time 0.034 seconds

Properties of Low Carbon Type Hydraulic Cement Binder Using Waste Recycle Powder (무기계 재생원료를 사용한 저탄소형 수경성 시멘트 결합재의 특성)

  • Song, Hun;Shin, Hyeon-Uk;Tae, Sung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • Cement is a basic material for the construction industry and it requires high temperature sintering when manufacturing cement. $CO_2$ emissions from raw materials and fuels are recognized as new environmental problems and efforts are underway to reduce them. Techniques for reducing $CO_2$ in concrete are also recommended to use blended cement such as blast furnace slag or fly ash. In addition, the construction waste generated in the dismantling of concrete structures is recognized as another environmental problem. Thus, various methods are being implemented to increase the recycling rate. The purpose of this study is to utilize the inorganic raw materials generated during the dismantling of the structure as a raw material for the low carbon type cement binder. Such as, waste concrete powder, waste cement block, waste clay brick and waste textile as raw materials for low carbon type cement binder. From the research results, low carbon type cement binder was manufactured from the raw material composition of waste concrete powder, waste cement block, waste clay brick and waste textile.

Design and Analysis of Hydrogen Production and Liquefaction Process by Using Liquefied Natural Gas (액화천연가스(LNG)를 사용한 수소 생산 및 액화 공정 개발)

  • Noh, Wonjun;Park, Sihwan;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.200-208
    • /
    • 2021
  • Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for refrigeration. On the other hand, the cold energy of the liquefied natural gas (LNG) is wasted during the regasification. It means there are opportunities to improve the energy efficiency of the hydrogen liquefaction process by recovering wasted LNG cold energy. In addition, hydrogen production by natural gas reforming is one of the most economical ways, thus LNG can be used as a raw material for hydrogen production. In this study, a novel hydrogen production and liquefaction process is proposed by using LNG as a raw material as well as a cold source. To develop this process, the hydrogen liquefaction process using hydrocarbon mixed refrigerant and the helium-neon refrigerant is selected as a base case design. The proposed design is developed by applying LNG as a cold source for the hydrogen precooling. The performance of the proposed process is analyzed in terms of energy consumption and exergy efficiency, and it is compared with the base case design. As the result, the proposed design shows 17.9% of energy reduction and 11.2% of exergy efficiency improvement compare to the base case design.

Creep Prediction of Chemical Grouted Sands (약액주입 사질고결토의 크리프 예측)

  • Kang, Hee-Bog;Kim, Jong-Ryeol;Kang, Kwon-Soo;Kim, Tae-Hoon;Hwang, Soung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.195-204
    • /
    • 2004
  • A series of constant creep and repeated creep tests are performed to investigate the behavior of visco-elasto-plastic materials of chemical grouted sands. In the result of constant creep test, the material exhibits three types of shear strain : elastic, plastic, viscoelastic. The elastic, plastic and viscoelastic strains are linear, i.e., the strains are proportional to the stresses for loading. Good agreement is found between the predicted viscoelastic and test results by the power law and the generalized model. In the repeated creep test, the instantaneous recoverable strain is time-independent and the magnitude of accumulated plastic strain increases with number of cycles. Also it is seen that the accumulated plastic strains are approximately proportional to stress. There are no significant differences between test results predicted values for first cycle, and the differences increase relatively insignificantly with number of cycles.

Reinterpretation of Business Models: Network Subscriber Perspective (네트워크 관점에서의 비즈니스 모델 재해석: 가입자 개념을 중심으로)

  • Kim, Jaeyoung;Han, Jaemin;Kim, YooJung
    • Information Systems Review
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2012
  • Network brings new values to the business in rapid changes of business paradigm. While business reveals new business model, the business has kept making efforts to replace traditional business model to network environment in order to solve the problems of spaces and times. In this research, we emphasize necessity through case study that the traditional concept of customer should be related with the concept of business network. The finding of this research mainly focused on business, tries to use traits of network without changes of business model, is easy to trap in structural inertia. However, the targeted companies in the case study preferentially considered customer as subscriber. Consequently, they successfully changed their existing business model as well as their business relationships with other companies. Based on methods of "Value Curve" and "Customer Experience Cycle," we analyzed the changed business model and proposed a conceptual idea regarding concept shifting from traditional customer to network subscriber. We hope that the research implicates to propose a new method for business model to develop more advanced business opportunities through using the concept of network subscriber.

  • PDF

Hydrolysis Stability of Sulfonated Phthalic and Naphthalenic Polyimide with Ester Bond (에스테르기를 도입한 술폰화 프탈계 폴리이미드와 나프탈렌계 폴리이미드의 수화안정성에 관한 연구)

  • 이영무;이창현;손준용;박호범
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.110-117
    • /
    • 2003
  • Sulfonated polyimides had been utilized and studied widely as available materials in chloro-alkali electrolysis, cationic exchange resins, and so on. However, a slow decrease in performance during experiments had been reported, which could be attributed to a loss of ionic conductivity related to either a continuous dehydration or polymer degradation. One of main reasons to account for the degradation of sulfonated polymers is the hydrolysis leading to polymer chain scission and decrement of molecular weight. Therefore, the objective of our study was to investigate possible imide cycle and additional ester bond cleavage connected with $SO_3$H presence under hydrated condition. In order to confirm and obtain as clear information as possible about breakages of bonds via $^1H\; and \;^{13}C$ NMR and IR spectroscopic analyses, our study was performed by model compound. Consequently, model compounds with both phthalic and naphthalenic imide ring and ester bonds were synthesized to evaluate the hydrolysis stability of sulfonated polyimide. The experiments were performed for prepared model compounds before and after aging in deionized water at $80^{\circ}C$ and were terminated by lyophilization technique. The aging products were finally analyzed by NMR and IR spectroscopy.

ITER 시험블랑켓 모듈(TBM) 일차벽 제작법 개발을 위한 Be/FMS mock-up의 고열부하 시험

  • Lee, Dong-Won;Kim, Seok-Gwon;Bae, Yeong-Deok;Yun, Jae-Seong;Jeong, Gi-Seok;Park, Jeong-Yong;Jeong, Yang-Il;Lee, Jeong-Seok;Choe, Byeong-Gwon;Hong, Bong-Geun;Jeong, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.274-274
    • /
    • 2010
  • 한국은 국제핵융합실험로 (ITER) 사업에 참여하고 있으며, 삼중수소 증식을 시험하기 위한 시험 모듈(TBM, Test Blanket Module)로서 HCML (Helium Cooled Molten Lithium) TBM을 설계, 개발하고 있다. 헬륨 및 액체 리튬을 냉각재와 증식재로 사용하는 개념으로, 구조재로서 Ferritic Martensitic (FM) 강이 사용될 예정이다. 특히, HCML TBM의 일차벽은 중성자 및 플라즈마로부터 입사되는 입자들을 차폐하기 위한 Be 차폐체와 FM강으로 구성되어 있으며, 일차벽 제작법 개발을 위해서는 Be과 FM강 간의 접합과 FM강 간의 접합 방법이 개발되어야 한다. FM강 간의 접합은 기존의 연구를 통해 접합 조건이 이미 도출되었고, 고열부하 시험을 통해 검증 완료한 상태이다. 그러나, Be과 FM강 간의 접합은 현재 개발단계에 있다. 본 논문에서는 고려 중인 구조재와 Be 차폐체 사이의 접합법 개발을 위해, 고온등방가압(HIP, Hot Isostatic Pressing) 조건을 도출하고, 운전조건과 유사 혹은 가혹한 조건에서 고열부하를 인가하여, 그 건전성을 평가하는 일련의 과정을 기술하였다. 본 연구에서는 Be과 FM강 간의 접합법 개발 및 검증을 위해 제작된 $80{\times}80{\times}1$ Be/FM강 mock-up을 국내에서 구축된 고열부하 시험 장비인 KoHLT를 활용하여 수행한 고열부하 시험에 대한 것이다. 본 mock-up은 $80{\times}80{\times}10mm(t)$의 Be tile 3개를 동일 크기에 두께가 각각 25mm와 50 mm인 FM강과 스테인레스강에 접합된 것으로, 고열부하 장비에 설치하여 고열부하 시험을 수행하였다. 냉각수의 온도 및 속도는 25 C, 0.15 kg/sec로 유지되었고, 열부하는 $0.5\;MW/m^2$로 유지하였다. 시험 조건에 대한 예비해석을 통해, 가열시의 온도 및 stress, strain 분포를 얻었고, 이를 통해, cycle to failure 값을 도출하였다. 1000 사이클의 가열 실험을 마친후 초음파를 활용한 접합 계면의 결함확인 및 파괴검사를 통한 접합 건전성을 확인하였다. 3가지 접합법 모두 일부 접합면이 이탈되었으며, 향후 보다 건전한 접합방법 개발이 진행되어야 할 것으로 보인다.

  • PDF

Synthesis and characterization of Li3V2(PO4)3/C composite cathode materials using direct co-precipitation method (직접 공침법을 이용한 Li3V2(PO4)3/C 복합체 양극 활물질 합성 및 특성)

  • Jeong-Hwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.167-173
    • /
    • 2023
  • Li3V2(PO4)3 and Li3V2(PO4)3/C composite with single phase monoclinic structure for the cathode materials are successfully synthesized by direct co-precipitation method using N2H4·H2O as the reducing agent and alginic acid as the carbon source, and their electrochemical properties were compared. The particles with approximately 1~2 ㎛ size and the uniform spherical-like morphology of the narrow particle size distribution were obtained. In addition, the residual carbon can also improve the electrical conductivity. The Li3V2(PO4)3/C composite has improved initial specific discharge capacity and excellent cycle characteristics to maintain capacity stably than Li3V2(PO4)3. The results indicate that the reducing agent and carbon composite can affect the good crystallinity and electrochemical performance of the cathode materials.

Design of a Block-Based 2D Discrete Wavelet Transform Filter with 100% Hardware Efficiency (100% 하드웨어 효율을 갖는 블록기반의 이차원 이산 웨이블렛 변환 필터 설계)

  • Kim, Ju-Young;Park, Tae-Guen
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.39-47
    • /
    • 2010
  • This paper proposes a fully-utilized block-based 2D DWT architecture, which consists of four 1D DWT filters with two-channel QMF PR Lattice structure. For 100% hardware utilization, we propose a new method which processes four input values at the same time. On the contrary to the image-based 2D DWT which requires large memories, we propose a block-based 2D DWT so that we only need 2MN-3N of storages, where M and N stand for filter lengths and width of the image respectively. Furthermore, the proposed architecture processes in horizontal and vertical directions simultaneously so that it computes the DWT for an $N{\times}N$ image within a period of $N^2(1-2^{-2J})/3$. Compared to existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rate. However, the proposed architecture may suffer from the long critical path delay due to the cascaded lattices in 1D DWT filters. This problem can be mitigated by applying the pipeline technique with maximum four level. The proposed architecture has been designed with VerilogHDL and synthesized using DongbuAnam $0.18{\mu}m$ standard cell.

Improvement of High-Temperature Performance of LiMn2O4 Cathode by Surface Coating (표면코팅을 통한 LiMn2O4 양극의 고온성능 개선)

  • Lee, Gil-Won;Lee, Jong-Hwa;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • An indium-tin oxide (ITO) coated spinel manganese oxide (${LiMn_2}{O_4}$, LMO) is prepared and its high-temperature ($55^{\circ}C$) cycle performance and rate capability are examined. A severe electrolyte decomposition and film deposition is observed on the un-coated ${LiMn_2}{O_4}$ cathode, which leads to a significant electrode polarization and capacity fading. Such an electrode polarization is, however, greatly reduced for the ITO-coated (> 2 mol%) LMO cathode, which leads to an improved cycle performance. This can be rationalized by a suppression of electrolyte decomposition, which is in turn indebted to a decrease in the direct contact area between LMO and electrolyte. The suppression of film deposition on the ITO-coated LMO cathode is confirmed by infra-red spectroscopy. The rate capability is also improved by the surface coating, which may be resulted from a suppression of resistive film deposition and high electric conductivity of ITO itself.

Distribution Behavior of Natural Radionuclide Pb in Molten Fe to Metal/Slag/Gas Phase (용융 Fe 중 천연방사성핵종 Pb의 금속/슬래그/가스상으로의 분배거동)

  • So-Yeong Lee;Hyeon-Soo Kim;Jong-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.54-61
    • /
    • 2024
  • When steel contaminated with Pb, produced by the decay of natural radionuclides, is remelted, Pb distributes among the metal, slag, and gas phases. In this study, 5 wt%Pb was added to Fe and melted with CaO-SiO2-Al2O3-MgO slag to investigate Pb's distribution in the metal/slag/gas. As slag basicity ((wt%CaO)/(wt%SiO2)) increased, Pb solubility in Fe slightly increased, while Pb in the slag tended to decrease. Consequently, the slag/metal distribution ratio of Pb decreased with increasing basicity. Thermodynamic calculations revealed that the slag/Fe phase distribution ratio of Pb remained very low irrespective of the activity coefficient of PbO in the slag, consistent with the experimental results. The calculated evaporation rate of Pb in Fe-Pb was approximately 22 times that of Fe; hence, most of the Pb evaporated into the gas phase.