• Title/Summary/Keyword: 2,4-dichlorophenoxyacetic acid

Search Result 107, Processing Time 0.02 seconds

Plant Regeneration via Adventitious Shoot Formation in Platycodon grandiflorum (Jacq. A. DC.) (도라지 (Platycodon grandiflorum (Jacq.) A. DC.) 부정아 형성을 통한 식물체 재분화)

  • Kim, Ju Young;Na, Hyun Sun;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.330-334
    • /
    • 2017
  • To investigate optimal conditions for plant regeneration in Platycodon grandiflorum (Jacq. A. DC.).Both leaf and hypocotyl explants were cultured on Murashige& Skoog's (MS) medium supplemented with combinations of 0.1, 0.5, 1.0, or 2.0 mg/L cytokinins (BA and kinetin) and 1.0 mg/L 2,4-D for 6 weeks, respectively. According to the type of explant, the total shoot organogenesis (56.38%) in leaf explants was higher than in hypocotyls (28.20%). In comparison with kinetin and BA for the plant regeneration, the frequency (70.38%) of leaf explants was higher in combination with kinetin and 2,4-D than of BA with 2,4-D (42.38%), whereas the frequency (35.56%) of hypocotyls explants was higher in BA combination than kinetin combination (20.83%). Thehighest frequency (94.20%) was observed from the cultures of leaf explants on the MS medium supplemented with 1.0 mg/L kinetin and 1.0 mg/L 2,4-D. Upon transfer onto 1/2 MS basal medium containing 3% sucrose, shoots developed into plantlets with roots, and were well grown in soil in the greenhouse. These results lead us to speculate that the optimization of culture conditions was responsible for the mass propagation from in vitro cultures of Platycodon grandiflorum (Jacq. A. DC.).

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Effects of Cytokinin and Auxin on Organ Formation in Leaf Scale Tissue of Allium Sativum L. (Cytokinin과 Auxin이 Allium Sativum L.의 인엽배양(鱗葉培養)에서 기관(器官)의 분화(分化)에 미치는 영향(影響))

  • Park, Kyeong Han;Lee, Yeong Bok
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.65-76
    • /
    • 1980
  • In order to determine the effects of cytokinin and auxin on organ formation from tissue of garlic cloves, leaf blades and basal tissues contained meristem of garlic (Allium sativum L.) cloves harvested in 1979 (old cloves) and 1980 (new cloves) were explanted on a MS medium contained various levels of BA ($N^6$-benzyl amino purine), NAA (naphthalene acetic acid), and 2, 4-D (2, 4-dichlorophenoxyacetic acid). And some of the new cloves were explanted on a media contained BA and NAA after chilling treatment at $4^{\circ}C$ for 10, 20, 30 and 40 days. 1. In a culture of leaf blades of old cloves, shoots were differentiated on a medium supplemented with 2mg/l of BA and NAA. 2. Callus was grown as a quite straw-coloured globular mass on a medium contained 0.2 or 2mg/l 2.4-D. 3. As subcultures of globular calli, shoots and roots were differentiated on a medium contained 2mg/l BA and 0.5 or 1 mg/l NAA, whereas no shoots was shown on a conterol. 4. Shoots were differentiated in a culture of leaf blades of new cloves, but they were not in an old cloves in control, and better effect was shown on a medium contained 2mg/l BA and 1mg/l NAA. However shoots were no differentiated from leaf blades chilled at $4^{\circ}C$ for 30 or 40 days at the same condition. 5. Large numbers of adventitious shoots could be obtained from basal region of garlic cultured on a medium contained 1mg/l BA and 4mg/l NAA, or 2mg/l BA and 2mg/l NAA.

  • PDF

Yellowish Friable Embryogenic Callus (YFEC) Production and Plant Regeneration from Immature Embryo Cultures of Domestic Maize Cultivars and Genotypes (Zea may L.) (국내 옥수수 품종 및 계통의 미숙배 배양으로부터 Yellowish Friable Embryogenic 캘러스 (YFEC) 생산과 식물체 재생)

  • Cho Mi-Ae;Park Yun-Ok;Kim Jin-Suck;Park Ki-Jin;Min Hwang-Ki;Liu Jang-Ryol;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.117-121
    • /
    • 2005
  • Immature embryos of 3 cultivars (Du Me Chal, Mi Baek Chal, Heug Jeom Chal) and 5 genotypes (HW1, KL103, HW3, HW4, KW7) were cultured on medium containing MS salts, Eriksson's vitamins, 1 mg/L 2,4-dichlorophenoxyacetic acid, 25 mM proline, 100 mg/L casamino acid, 3 mM MES, 1.7 mg/L $AgNO_3$ and 20 g/L sucrose (SIM). Frequency of somatic embryo formation on explant of immature embryos showed in HW1 (45.20%), KL103 (5.75%), HW3 (37.20%), HW4 (30.10%), KW70 (55.20%), Mi Baek Chal (18.74%), Heug Jeom Chal (22.41%), Du Me Chal (36.72%) and Hi II type (<10%), respectively. Yellowish friable embryogenic callus (YFEC) such as type II callus of Hi II genotype only produced from the HW3 and Heug Jeom Chal, whereas other cultivars and genotypes were directly formed somatic embryos with late-embryonic stages or expanded yellowish compact somatic embryo with morphological abnormality. The yellowish friable embryogenic callus (YFEC) could be proliferated on the same medium, which were maintained embryogenic capacity for 6 months over. Upon transfer to first regeneration and second regeneration medium, somatic embryos converted to plantlets at a frequency of approximately 100%. However, the expanded somatic embryos with abnormal morphology were slowly proliferated when subcultured on the same medium, and some of them were degenerated or converted to plantlets at a frequency of approximately 25%. Accordingly, The Heug Jeom Chal and HW3 genotype will be further used for development of high frequency transformation system in domestic maize germplasm.

Embryogenesis and plant regeneration of Panax ginseng Meyer via anther culture and ploidy assessment using flow cytometry (인삼 약 배양을 통한 배 발생과 식물 재분화 및 유세포 분석기를 이용한 배수성 검정)

  • Jung-Woo Lee;Kyong-Hwan Bang;Dong-Hwi Kim;Jang-Uk Kim;Young-Chang Kim;Ick-Hyun Jo
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.19-26
    • /
    • 2023
  • Korean ginseng (Panax ginseng Meyer) is an economically important plant because of it is rich in saponins. It is mainly cultivated in Asia, including Korea and China. Since ginseng requires a long breeding period due to juvenility, homozygote production techniques, such as anther culture, must be urgently established. In the present study, callus induction and embryogenesis through anther culture were observed in P. ginseng. Murashige and Skoog medium was used as the basal medium suitable for callus induction. When the medium was supplemented with 3% sucrose, the callus induction rate was high and the callus size was large. Cold pretreatment did not significantly affect callus induction and embryogenesis. Embryogenesis was the most efficient when the embryo-formation medium was supplemented with 1.0 or 3.0 mg/L 2,4-dichlorophenoxyacetic acid. Cultivar significantly affected anther culture efficiency. Specifically, 'Cheongseon' showed the highest embryo-formation efficiency, whereas no embryogenesis occurred in 'Sunun'. Ploidy assessment revealed the haploid status of the induced calli. Embryos derived from anther culture formed shoots upon transfer to germination medium, although no difference in ploidy was noted between the induced callus and control. Overall, the anther culture conditions established in the present study may contribute to the production of homozygous P. ginseng plants in the future.

Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors

  • Bouamama-Gzara, Badra;Selmi, Ilhem;Chebil, Samir;Melki, Imene;Mliki, Ahmed;Ghorbel, Abdelwahed;Carra, Angela;Carimi, Francesco;Mahfoudhi, Naima
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.561-571
    • /
    • 2017
  • Prospecting of local grapevine (Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. 'Hencha' were successfully induced from filament, when cultured on $Ch{\acute{e}}e$and Pool (1987). based-medium, enriched with $2mg1^{-1}$ of 2,4-dichlorophenoxyacetic acid and $2.5mg1^{-1}$ of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPaV as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% 'Hencha' somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination.

Investigation of Herbicide Safeners and their Mode of Safening Action;II. Effect of N-(4-chlorophenyl) maleimide, Plant Growth Regulators, and Alkylating Agents on Glutathione Content and Glutathione S-transferase Activity (제초제(除草劑) 약해경감물질(藥害輕減物質) 탐색(探索)과 작용기구(作用機構) 규명(糾明);Ⅱ. Glutathione 함량(含量)과 Glutathione S-transferase 활성(活性) 변화(變化)에 대한 N-(4-chlorophenyl) maleimide, 식물생장조절물질(植物生長調節物質) 및 Alkylating Agents 의 효과(效果))

  • Chun, Jae-Chul;Ma, Sang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.329-337
    • /
    • 1995
  • The effect of N-(4-chlorophenyl) maleimide(CPMI), plant growth regulators, and alkylating agents on gluathione(GSH) content and glutathione S-transferase(GST) activity was examined with 3-day-old etiolated sorghum(Sorghum bicolor [L.] Moench) seedlings. The GSH content and GST activity of untreated seedlings were higher in shoots than that in roots. Response of GST activity in coleoptile was significantly greater than in other tissues of sorghum seedling. In CPMI-treated seedlings, GSH content was not significantly different from that in untreated seedlings. CPM treatment resulted in 2.3-fold increase in GST activity measured with metolachlor as substrate in the coleoptile region. In contrast, change in GST activity measured with metolachlor as substrate in the coleoptile region. In contrast, change in GST activity measured with 1-chloro-2, 4-dinitrobenzene did not occur. The increase of GST activity was caused by induction of a GST isozyme, which is substrate-specific to metolachlor. Subsequently, two hypotheses related to metolachlor detoxification were evaluated on the basis of regulation of plant growth regulators and substrate induction of GST activity. In coleoptile, GST activity measured with metolachior was increased to 2.1-and 3.4-fold by both 2, 4-dichlorophenoxyacetic acid(2,4-D) and metolachlor treated at the germination stage of sorghum, respectively. Treatments of 2.4-D and metolachlor also induced isozymes exhibiting the activity toward metolachlor. One of the isozymes was co-eluted with that induced by CPMI. These results indicated that increase in GST activity by CPMI may be partially related to auxin regulation and substrate induction.

  • PDF