• Title/Summary/Keyword: 2,4,5-trichlorophenol

Search Result 20, Processing Time 0.019 seconds

Biodegradation of 2,4,5-Trichlorophenol Using Cell-Free Culture Broths of Phanerochaete chrysosporium

  • Choi, Sueh-Yung;Moon, Seung-Hyeon;Lee, Jae-Suk;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.759-763
    • /
    • 2000
  • Cell-free culture broth of Phanerochaete chrysosporium has been adopted to biologically degrade 2,4,5-trichlorophenol. Two different medium compositions of nitrogen-sufficient and nitrogen-limited were compared for their distribution of isozymes, activity of lignin peroxidase, and production of oxalate. The two different culture broths were tested for their ability to degrade 2,4,5-trichlorophenol, and the biodegradation efficiency was estimated in terms of the disappearance of 2,4,5-trichlorophenol. The degradation efficiency for the nitrogen-limited culture broth was higher than that of the nitrogen-sufficient culture broth, since the nitrogen-limited culture broth induced lignin peroxidases (LiPs) and manganese peroxidases (MnPs), and contained sufficient oxalate for producing necessary radicals. Finally, the possible mechanism of 2,4,5-CP degradation using the nitrogen-limited culture broth was proposed.

  • PDF

The Effect of Electron Donor on Reductive Dechlorination of Chlorophenols (염소계페놀의 환원적 탈염소화에서의 전자공여체의 영향)

  • 박대원;김성주박정극
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.211-217
    • /
    • 1996
  • Batch experiments were conducted to investigate the effect of electron donor on reductive dechlorination of 2,4,5-trichlorophenol by a methanogenic consortium. The methanogenic consortium was obtained from the anaerobic digester of a municipal wastewater treatment plant. The batch reactor containing methanogenic consortium was spiked with 2,4,6-trichlorophenol at 10 mg/$\ell$. Acetate, ethanol, glucose of methanol, each was added as an electron donor for methanogenic consortium. During the course of the experiments liquid samples were taken from the batch reactor to measure dechlorination rate and find the dechlorination pathway of 2,4,6-trichlorophenol. After incubation 2,4,6-trichlorophenol was first dechlorinated to 2,4-dichlorophenol and then to 4-chlorophenol. Phenol was not detected in the batch reactor the highest rate of dechlorination of 2,4,6-trichlorophenol was observed when ethanol was used as an electron donor.

  • PDF

Oxidative Decomposition of 2, 4, 6-Trichlorophenol Catalyzed by Polymer Supported Metalloporphyins (고분자결합 금속포르피린을 촉매로 한 2, 4, 6-트리클로로페놀의 산화 분해반응)

  • Park, Hye-Ok;Lee, Bo-Young;Rhee Paeng, Insook
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.72-79
    • /
    • 2001
  • Oxidative decomposition of 2, 4, 6-trichlorophenol(TCP) was studied in aqueous solution. Iron and manganese protoporphyrin [or tetrakis(p-carboxyphenylporphyrin)] and their polymer supported derivatives were used as catalysts, and $KHSO_5$ and tert-butyldroperoxide(TBHP) as oxidants. Metalloporphyrin itself shows very poor catalytic activity in oxidative decomposition of TCP with oxidant. However, very high catalytic activity was observed when metalloporphyrin was chemically bound to newly synthesized polymers or XAD2 resin. Additionally, it revealed much higher catalytic activity in the presence of water-soluble polymers having a electron-donating axial ligand such as pyridine and immidazole. Maleic acid and chloromaleic acid were found in the resulting solution by ESI-MS. Especially, XAD2-supported metalloporphyrins can be reused as catalysts due to insolubility to solvent, and stability against oxidant.

  • PDF

Determination of chlorophenols from the industrial wastewater by GC/MS (GC/MS를 이용한 산업폐수중의 염화페놀류 분석)

  • Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.320-328
    • /
    • 2005
  • The most common five chlorophenols (4-chloro-3-methylphenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol) were determined from the industrial wastewater by GC/MS. The samples were collected from the petrochemical company, textile company and leather making company. The developed analytical method was modified by USEPA Method 3510. The samples were extracted with dichloromethane under pH 2 and pH 5-6, and determined by the GC/MS with SIM mode. There were good linearities (above $R^2=0.9943$) on e ranges of the 0.1 ng/mL~10 ng/mL and 0.5 ng/mL~10 ng/mL, and the limit of detection were between 0.1 ng/mL and 0.5 ng/mL. The absolute recoveries were measured at the concentration of 1, 5, and 10 ng/mL, and the recovery was 71.6~98.9% except for PCP. The relative standard deviation (RSD) was 1.2~14.3% and it gave a good reproducibility for the assay. The bias, which shows the accuracy, was a good although it was a little high values (11.3~22.1%) at the low concentration (1 ng/mL).

The Bacteriostatic Action of Trichlorophenoxy Alkylene Ammonium Derivatives and their Synthesis (Trichlorophenoxy alkylene ammonium 유도체(誘導體)의 합성(合成) 및 살균작용(殺菌作用)에 관(關)한 연구(硏究))

  • Kang, Shin-Wang;Cha, Choong-Suk;Yun, Hea-Chung;Kim, Hwa-Woong;Kim, Chung-Yung;Lee, Dae-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.47-53
    • /
    • 1966
  • The bacteriostatic action of trichlorophenoxy alkylene ammonium derivatives, 2(2,4,5-trichlorophenoxy) ethylene N-triethyl ammonium bromide; (2,4,5-TETB), 2(2,4,6-trichlorophenoxy) ethylene N-triethyl ammonium bromide; (2,4,6-TETB), 2,4,5-triphenoxy ethylene pyridinium bromide; (2,4,5-TEPB), and 2,4,6-trichlorophenoxy ethylene pyridinium bromide:(2,4,6-TEPB) were observed by Jackson and Finland's and Finland's and Pak's on Staphylococcus aureus, E. coli, Salmonella typhi, Shigella flexneri, and Bacillus subtilis, comparing with those of phenol and trichlorophenol. The following results were obtained. 1) Phenol is bacteriostatic in a concentration of $10^{-3}$ for all above species. 2) Trichlorophenol is bacteriostatic in concentration of $10^{-4}$ to $5{\times}10^{-5}$ for all above species(Table 7), 3) 2,4,5-TETB and 2,4,6-TETB are bacteriostatic in a concentration of $10^{-4}$ and $5{\times}10^{-5}$ for Staphylococcus aureus, Salmonella typhi, and Shigella flexneri, but do not for E. coli and Bacillus subtilis(Table 8 and 9). 4) 2,4,5-TEPB and 2,4,6-TEPB are bacteriostatic in a concentrationof $10^{-4}$ and $5{\times}10^{-5}$ only for Staphylococcus aureus among four species(Table 10 and 11).

  • PDF

Effect of pH on the sorption and desorption of chlorinated phenols using HDTMA-montmorillonite (HDTMA-몬모릴로나이트를 이용한 염화페놀류 화합물의 흡착 및 탈착시 pH의 영향)

  • 김지훈;김영규;신원식;김영훈;최상준;전영웅;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.19-22
    • /
    • 2001
  • The effects of pH on the sequential sorption/desorption of chlorinated phenols (2-chlorophenol, 2.4-dichlorophenol and 2,4,5-trichlorophenol) in HDTMA-montmorillonite were investigated by maintaining pH 4.85 or 9.15 in the sequential batch sorption and desorption experiments. The chlorinated phenols are hydrophobic ionizable orginic compounds; they can exist as either neutral (pH << pKa) or anionic (pH >> pKa) forms. Among the tested chlorinated phenols, 2,4,5-trichlorophenol showed the highest sorption affinity at pH 4.85 as expected by the $K_{ow}$ . Neutral speciation at pH 4.85 exhibited higher sorption affinity than anionic speciation at pH 9.15. Our results indicates that desorption of chlorinated phenols is strongly dependent on pH of the aqueous phase. Freundlich model was used to analyze the single-solute sorption/desorption results. The ideal adsorbed solution theory(IAST) was employed to predict the hi-solute sorption/desorption equilibria.

  • PDF

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

Emission Character of PCDDs/PCDFs and Precusors in the Flue Gas of the MWSI(I) (도시쓰레기 소각로 배출가스 중 다이옥신류 및 전구물질의 배출특성(I))

  • Shin, S.K.;Chung, Y.H.;Kim, S.C.;Jang, S.K.;Lee, J.I.;Lee, W.S.;Lee, J.B.;Lee, D.H.
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • Two of municipal waste incinerators were selected as surveying facilities to research on the emission of dioxin and precusors. The sampling of flue gas and analysis was performed in the selected facilities. From the result, the emission patterns of dioxin and precusors, their relatership were examined. The toxic equivalency quantity(TEQ) of dioxin concentration was evaluated in two municipal waste incinerators. The 76.24% and 60.84% of total dioxin concentration in A and B incinerator were made up of the penta-, hexa- and hepta-chlorinated dibenzo-p-dioxin, respectively. Therefore, to reduce the dioxins in flue gas have to control the formation of furans. The chlorobenzenes and chlorophenols were analyzed in two incinerators. The 1,2,4,5-tetrachlorobenzene, penta-, and hexachlorobenzene are discharged and 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol are discharged mainly in A and B municipal waste incinerators.

  • PDF

Studies on insecticidal activity and synthesis of Bis (trichlorophenoxy) ethane (Bis(trichlorophenoxy) ethane(BTPE)의 합성 및 살충효력에 관한 연구(I))

  • Kim C. S.;Kim H. W.;Kim M. Y.;Kang S. W.;Lee D. S.;Lee E. S.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.47-50
    • /
    • 1965
  • Many of the chlorophenol derivatives are widely used as insecticides, herbicides and plant growth regulators. The function and use of these chemicals would be different according to the number of chlorine and their chemical structures. It was reported in this article that 1) Bis(trichlorophenoxy) ethane was synthesized with 2 mol-trichlorophenol and 1 moi-dibromoethane in 2 moi-Sodium hydroxide alcohol solution, and 3) the insecticidal activity of Bis(trichlorophenoxy) ethane was compared with Phenkapton, Tedion V-18, BHC, and DDT, on Citrus red mite, Bombix mori (Silk worm), and Daikon leaf beetle(Phaedon brassicae) 3) The toxicity of Bis(2, 4, 5-trichlorophenoxy) ethane and Bis(2, 4, 5-trichlorophenoxy) ethane was studied on mice. The following results were obtained. 1) Yield of Bis(2, 4, 5-trichlorophenoxy) ethane, $50.06\%$, m.p. $157-159^{\circ}C$, and yield of Bis(2,4, 6-trichlorophenoxy) ethane, $32.60\%$, m.p. $162-163^{\circ}C$. 2) Insecticidal activity of Bis(2, 4, 5-trichlorophenoxy) ethane to Citrus red mite is stronger than that of Tedion V-18, and weaker than that of Phenkapton. 3) Insecticidal activity of Bis(2, 4, 5-trichlorophenoxy) ethane to Bombix mori is weaker than those of BHC and DDT. 4) Insecticidal activity of Bis(2. 4, 5-trichlorophenoxy) ethane to Daikon leaf beetle proved to be ineffective. 5) Five rams of Bis(2, 4, 5-trichlorophenoxy) ethane and Bis(2, 4, 6-trichlorophenoxy) ethane pet kg of body weight respectively were given to mice orally, and none of the mouse was killed by it after a period of 72 hours. Therefore it seems that there is almost no toxicity.

  • PDF

Rapid Analytical Method of Volatile- and Semivolatile Organic Compounds in Water and their Monitoring in Water Treatment Plants (물 시료 중 휘발성 및 반휘발성 유기물질들의 빠른 분석법 및 정수처리 단계별 모니터링)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.240-250
    • /
    • 2004
  • A gas chromatography-mass spectrometric (GC-MS) assay method was developed for the rapid and sensitive determination of volatile- and semivolatile organic compounds in water. Two hundreds mL of water sample was extracted in a 250 mL separatory funnel with 1 ml of pentane at pH 6.5. Fluorobenzene and 1,2-dichlorobenzene-d4 as internal standards were added to water sample and the solution was mechanically shaken for 5 min and analyzed by GC-MS (selected ion monitoring) without more any concentration or purification steps. The peaks had good chromatographic properties and the extraction of these compounds from water also gave relatively high recoveries with small variations. The range of detection limits of the assay was 0.5-10 ng/L. Turnaround time for up to about 40 samples was one day. This method is simple, convenient, and can be learned easily by relatively inexperienced personnel. This method was used to analyze 15 volatile- and semivolatile organic compounds in water of a Lake, and raw and treated water from three Water Treatment Plants in Korea. As the analytical results, benzene, toluene, xylene, isopropylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene and 2,4,6-trichlorophenol were detected at concentrations of up to 0.4, 1.9, 1.3, 0.2, 1.8, 13.0, 1.7 and $1.1{\mu}g/L$, respectively. But chlorobenzene, trichloroethylene, tetrachloroethylene, ethylbenzene, n-butylbenzene and dibromochloropropane levels during that period were not significant. The removal effect of the compounds in three Water Treatment Plants was calculated. The compounds studied were generally removed during conventional water treatment, especially during the active carbon filtration.