• Title/Summary/Keyword: 2,2-Azobis

Search Result 107, Processing Time 0.024 seconds

Antioxidant Activity and Protective Effect of Leaf Extract from Diospyros lotus on Oxidative Stress of Red Blood Cells (고욤 잎 추출물의 항산화 활성 및 적혈구 산화적 손상에 대한 보호 효과)

  • Kim, Hyeon Soo;Kang, Hyun Ju;Jeon, In Hwa;Mok, Ji Ye;Park, Young Kyun;Shin, Jun Ho;Kim, Jang Ho;Jang, Seon Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.631-636
    • /
    • 2013
  • This study was to evaluate the antioxidant properties of the leaf extracts of Diospyros lotus (DLE) on the chemical-induced free radical and rat red blood cell (RBC) oxidative damage in vitro. DLE were prepared by extracting with water. DLE showed the high antioxidant activities on the scavenging of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)-induced radicals. An antioxidant activities of DLE was similar to the reference antioxidant butylated hydroxytoluene (BHT) and (${\pm}$)6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox). Reducing power of $1,000{\mu}g/mL$ DLE also was similar to the vitamin C. In RBC, oxidative hemolysis induced by the aqueous peroxyl radical generator (2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)) were significantly suppressed by DLE in a dose-dependent manner. Furthermore, DLE prevented the depletion of cytosolic antioxidant glutathione in RBC damaged with AAPH. These results suggest that DLE may has value as natural product with its high quality antioxidant properties against oxidative stress.

Changes in chemical properties and cytotoxicity of turmeric pigments by microwave treatment (마이크로파처리에 의한 심황색소의 화학안정성 및 세포독성 변화)

  • Song, EiSeul;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.693-698
    • /
    • 2017
  • Turmeric is a yellow food-coloring spice containing curcuminoids, curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BMC), which have several physiological effects. In the present study, the effect of microwave irradiation on the chemical properties, antioxidant activity, and cytotoxicity of turmeric were investigated. Degradation of turmeric pigments was accelerated upon increase in irradiation time or intensity at 405 nm. Residual levels of curcumin, DMC, and BMC after 5 minutes of irradiation at 700 W were 11.3, 34.4, and 71.2%, respectively. Scavenging activities of turmeric pigment against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) peroxyl radical and nitrite were enhanced significantly after microwave radiation. However, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity remained unaffected. Cytotoxic activity of turmeric was significantly reduced, and hydrogen peroxide generated from turmeric increased after microwave irradiation. The results obtained indicate that microwave irradiation affects chemical stability and bioactivity of turmeric pigment. Hence, these effects should be considered when processing foods containing turmeric pigments.

Effects of Heat Processing Time on Total Phenolic Content and Antioxidant Capacity of Ginseng Jung Kwa

  • Oh, Chang-Ho;Kim, Gyo-Nam;Lee, Sang-Hyun;Lee, Jung-Sook;Jang, Hae-Dong
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.198-204
    • /
    • 2010
  • Korean ginseng (Panax ginseng C.A. Meyer) preserved in syrup, known as ginseng Jung Kwa (GJK), is a popular traditional snack in Korea. We investigated the effects of heat processing time on total phenolic content and antioxidant capacity of GJK. Water extract was prepared from GJK with different heat processing times, 3 hours (GJK-3), 6 hours (GJK-6), or 12 hours (GJK-12), with sonication for 2 hours. The GJK extract contained total phenolic content in the following order: GJK-12 (2.28%)>GJK-6 (1.57%)>GJK-3 (1.29%). Both the peroxy and hydroxyl radical-scavenging activity and cellular antioxidant capacity of GJK extract was significantly enhanced with increasing heat processing time. The hydroxyl radical-scavenging activity of GJK-12 extract was greater than that of the GJK-3 and GJK-6 extracts, consistent with metal chelating capacity and reducing capacity. In a cellular model, the GJK extract effectively reduced 2,2'-azobis(2-amidinopropane) dihydrochloride, $Cu^{2+}$-, and $H_2O_2$-induced oxidative stress, with GJK-12 and GJK-6 extracts demonstrating greater cellular antioxidant capacity than the GJK-3 extract. These results suggest that heat processing time can contribute to the antioxidant capacity of GJK and that GJK extract may have the potential to be used as an effective dietary antioxidant to prevent oxidative stress-related diseases.

Antioxidant and Antimicrobial Activities of Camellia Oleifera Seed Oils

  • Zhou, Qing-Fen;Jia, Xue-Jing;Li, Qian-Qian;Yang, Rui-Wu;Zhang, Li;Zhou, Yong-Hong;Ding, Chun-Bang
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.123-129
    • /
    • 2014
  • The antioxidant and antimicrobial activities of Camellia oleifera seed oil were studied. Four kinds of seed oil samples were prepared, crude oil and refined oil, extracted by cold pressing method (CPC, CPR), and organic solvent extraction (OSC, OSR). Antioxidant activity analysis was measured in 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt, ferric reducing Ability of Plasma, and 2,2-diphenyl-1-picrylhydrazyl assays. Besides, the percentage of inhibition of red blood cells hemolysis induced by 2,2'-azobis(2-amidnopropane) dihydrochlorid, the lag time of LDL conjugated dienes formation in vitro, and the inhibitors of loss in tryptophan fluorescence were all used to estimate the antioxidant activity of the samples. The total phenolic contents (TPC) were detemined by Folin-Ciocalteu method. The TPC of the C. oleifera seed oils can be arranged in descending order: CPC ($1.9172{\mu}g/mL$) > OSC ($1.5218{\mu}g/mL$) > CPR ($1.0611{\mu}g/mL$) > OSR ($0.6782{\mu}g/mL$). And the oils were investigated for activity against Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus niger. The results showed the antioxidant activity of crude oil by cold pressing method was stronger than others, and all oils did inhibit activity of the top three bacteria expert A. niger. The further significance of the study contributes to measure the antioxidant and antimicrobial activity of the potential health benefits by the different methods of preparation and the oil of C. oleifera seeds acting as free radical scavenger, pharmaceuticals and preservatives may offer some information in medicine and cosmetic not just in food field.

A Study on Antioxidative Effects of Sipyimiguanjungtang and Osuyubujayijungtang, Korean Traditional Prescriptions for Soum Constitutes, in Brain and Liver of Rat (소음인(少陰人) 십이미관중탕(十二味寬中湯), 오수유부자이중탕(吳茱萸附子理中湯)이 흰쥐의 뇌(腦)와 간조직(肝組織)의 항산화(抗酸化) 기전(機轉)에 미치는 영향(影響))

  • Jung, Bong-yeon;Song, Il-byung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.227-250
    • /
    • 1999
  • The free radical theory of aging was introduced in 1956 by Denham Harman. This aging theory proposed that normal aging results from random deleterious damage to tissues by free radical and supplying antioxidant lead to decrease oxidative damage, inhibit aging process. In this study, we investigated antioxidantive effects of four Korean constitutional prescriptions for 'Soum' constitution - Palmulgunjatang(Y1), Sipyimiguanjungtang(Y2), Osuyubujayijungtang(Y3) and Seungyangyikkibujatang(Y4). Antioxidative activity of this prescriptions was examined by 1,1-diphenyl-2-picrylhyrdazyl radicals, superoxide anion radicals, peroxyl radical, hydroxyl radical scavenging effects and erythrocyte hemolysis inhibitory effects. Y2 and Y3 were shown to have relatively high antioxidative activity on this methods. In additions, result of the cytoprotective effects of Korean constitutional prescriptions agianst 2,2'-azobis(amidinopropane) dihydrochloride (AAPH), a free radical initiator, induced cytotoxcity in human hepatoblastoma cell line was similarly obtained. On the basis of this result, we assayed the antioxidative effects of Y2 and Y3 on experimental oxidative damage, induced in mouse by 100mg/kg AAPH. Male ICR mouse were given oral administration of 500mg/kg Y2 and Y3 for 4 weeks. Thiobarbuturic acid reactive substance (TBARS) and protein degradation level in liver, plasma and brain as index of oxidative damage were decreased and thiol compound, total antioxidant status in plasma were increased by Y2 administration. But, Y3 injected group was decreased only protein degradation level in brain. Also, glutathione, a potent water-soluble endogenous antioxidant, concentration was increased by Y2 and Y3 administration in liver and brain. However, superoxide dismutase and catalase activity as a major antioxidative enzyme in vivo were not shown change by Y2 and Y3 administration. On the basis of these result, Y2 have an antioxidative effects on both water-soluble fraction and lipid-solube fraction in cell and tissues. But, Y3 has a lower antioxidative effects on lipid-soluble fraction than Y2 in cell and tissues. These results suggest that Y2 has a antioxidative effects by protect the tissue against oxygen free radical mediated oxidative damage and Y3 has a limited antioxidaitve effects on water-soluble fraction in vivo. Therefore, we make report that Y2 is more effective prescriptions for anti-aging or therapeutics of diseases.

  • PDF

Development of Bioactive Substances from Fishery Processing by-products in Jeju (제주 수산가공부산물 유래 기능성 소재 탐색)

  • Kang, Nalae;Lee, WonWoo;Ko, Ju-Young;Kim, Hyun-Soo;Kim, Junseong;Ahn, Yong-Seok;Ko, Chang-Ik;Jeong, Joon Bum;Jeon, You-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2014
  • In this study, we investigated the bioactive substances of the Alcalase hydrolysate obtained from fishery processing by-products in Jeju by measuring bioactivities including radical scavenging acitivty, cytoprotective activity against 2,2-azobis-(2-amidino-propane) dihydrochloride (AAPH), and ACE inhibitory activity. This study is important because of utilization of unused fishery processing by-products in Jeju. The Alcalase hydrolysate was prepared through the hot water extraction and enzymatic hydrolysis, and then further separation of the Alcalase hydrolysate was performed by ultrafiltration using 10 kDa molecular weight cut-off membrane. The Alcalase hydrolysate showed the relatively higher DPPH and peroxyl radical scavenging activity ($IC_{50}$ value; 1.30 mg/ml and 0.888 mg/ml, respectively). Also, the Alcalase hydrolysate showed the ACE inhibitory activity with 1.87 mg/ml of $IC_{50}$ value. These biological activities are increased over 1.2 or 2.5 times through the ultrafiltration of the Alcalase hydrolysate. Therefore, the Alcalase hydrolysate obtained from fishery processing by-products in Jeju and the different molecular weight fractions should be given consideration for food and cosmetics ingredient. Furthermore, this research on the utility of fishery processing by-products might be a useful tool into the industry.

Hyaluronidase Inhibitory and Antioxidant Activities of Enzymatic Hydrolysate from Jeju Island Red Sea Cucumber (Stichopus japonicus) for Novel Anti-aging Cosmeceuticals

  • Ding, Yuling;Jiratchayamaethasakul, Chanipa;Kim, Eun-A;Kim, Junseong;Heo, Soo-Jin;Lee, Seung-Hong
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.62-72
    • /
    • 2018
  • An active ingredient with hyaluronidase (HAse) inhibitory effect is one of the anti-aging approaches in cosmeceuticals. Here, red sea cucumbers (RSCs), Stichopus japonicus, from Jeju Island were evaluated to examine their HAse inhibitory and antioxidant activity effect. In this study, RSCs were extracted by six enzymatic hydrolysis (Alcalase; Al, Trypsin; Try, Neutrase; Neu, Pepsin; Pep, Alpha-chymotrypsin; Chy and Protamex; Pro). Alcalase hydrolysate (AlH) showed the highest antioxidant capacities for both of oxygen radical absorbance capacity (ORAC) and trolox equivalent antioxidant capacity (TEAC) methods, compared to those of other hydrolysates, at $66.59{\pm}0.78{\mu}M\;TE/mg$ and $135.78{\pm}3.24{\mu}M\;TE/mg$, respectively. Furthermore, AlH performed the highest capacity of HAse inhibitory with $IC_{50}$ value of 3.21 mg/ml. Thus, RSCs hydrolyzed by Al were chosen to determine the cellular antioxidant activity and hyaluronic acid (HA) production effect on Human immortalized keratinocyte cell line (HaCaT). The results showed that AlH improved the cell viabilities and intracellular reactive oxygen species (ROS) induced by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) were significantly decreased. In addition, AlH increased HA amount by regulating HYAL2 and HAS2 expressions in the HaCaT cells. Taken together, AlH of RSCs collected from Jeju Island showed HAse inhibitory and antioxidant activities against skin-aging which shows its potentials can be an optional natural bioactive ingredient for novel cosmeceuticals.

Anti-Oxidant and Hepatoprotective Activities of Ziziphus mucronata Fruit Extract Against Dimethoate-Induced Toxicity

  • Kwape, Tebogo Elvis;Chaturvedi, Padmaja;Kamau, Macharia;Majinda, Runner
    • Journal of Pharmacopuncture
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2013
  • Objective: The study was carried out to evaluate the hepatoprotective and antioxidant potential of Ziziphus mucronata (ZM) fruit extract. Methods: The different types of fruit extract were prepared by soaking the dry powdered fruit in different solvents followed by rotary evaporation. Each extract was tested for its phenol content and antioxidant activities. An in vivo study was performed in Sprague-Dawley (SD) rats. Thirty adult male SD rats (aged 21 weeks) were divided into six groups of five rats each and treated as follows: The normal control (NC) received distilled water while the dimethoate control (DC) received 6 mg/kg.bw.day-1 dimethoate dissolved in distilled water. The experimental groups E1, E2, E3, and E0 received dimethoate (6 mg/kg.bw) + ZMFM (100 mg/kg.bw-1), dimethoate (6 mg/kg.bw) + ZMFM (200 mg/kg.bw-1), dimethoate (6 mg/kg.bw) + ZMFM (300 mg/kg.bw-1), and ZMFM (300 mg/kg.bw-1) only. Both the normal control and the dimethoate control groups were used to compare the results. After 90 days, rats were sacrificed, blood was collected for biochemical assays, and livers were harvested for histological study. Results: High phenol content was estimated, and 2, 2-diphenyl-1-picryl hydrazyl radical (DPPH) spectrophotometric, thin layer chromatography (TLC) and 2, 2-Azobis-3-ethyl benzothiazoline-6-sulphonic acid (ABTS) assays showed a high antioxidant activity among the extracts. The preventive effects observed in the E1, E2 and E3 groups proved that the extract could prevent dimethoate toxicity by maintaining normal reduced glutathione (GSH), vitamin C and E, superoxide dismutase, catalase, cholineasterase and lipid profiles. The preventive effect was observed to be dose dependent. The EO group showed no extract-induced toxicity. Histological observations agreed with the results obtained in the biochemical studies. Conclusion: The study demonstrated that ZM methanol fruit extract is capable of attenuating dimethoate-induced toxicity because of its high antioxidant activity.

Antioxidative Effects of Common and Organic Kale Juices (유기농 및 일반농 케일 착즙액의 항산화 활성)

  • Kim, Jong-Dai;Lee, Ok-Hwan;Lee, Jong Seok;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.668-674
    • /
    • 2014
  • The objective of the present study was to investigate the protective and free radical scavenging effects of conventionally and organically cultivated kale juices against oxidative damage in $LLC-PK_1$ cells. The DPPH, NO, $O_2{^-}$, and ${\cdot}OH$ radical scavenging activities of organically cultivated kale were higher than those of conventionally cultivated kale juice. Oxidative damage induced by AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride), SNP (sodium nitroprusside), pyrogallol, and SIN-1 (3-morpholinosydnonimine) led to loss of cell viability and increased lipid peroxidation in LLC-PK1 cells, whereas treatment with vegetable juices, especially organically cultivated kale juices, significantly increased cell viability and inhibited lipid peroxidation in a dose-dependent manner (P<0.05). These results suggest that organically cultivated kale juices have protective roles against oxidative stress induced by free radicals.

Antihyperlipidemic and Antioxidant Effects of the Mixture of Ginseng Radix and Crataegi Fructus: Experimental Study and Preliminary Clinical Results

  • Ko, Chang-Nam;Park, Seong-Uk;Chang, Gyu-Tae;Jung, Woo-Sang;Moon, Sang-Kwan;Park, Jung-Mi;Cho, Ki-Ho
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • The mixture of Ginseng Radix and Crataegi Fructus (Gen-CF) was developed to increase the pharmacological effect of ginseng in the treatment of hypercholesterolemia and prevention of cardiovascular disease. This study evaluated the effects of Gen-CF on serum lipids of hypercholesterolemic rats in vivo, as well as its antioxidant activities in vitro, and explored its clinical effects on patients with hypercholesterolemia. In vitro, Gen-CF displayed 1,1-diphenyl-2-picrylhydrasyl and superoxide radical scavenging activities, and inhibited hemolysis induced by 2,2'-azobis-2-amidinopropane dihydrochloride in a dose-dependent manner. In vivo, Gen-CF significantly inhibited the increases of total cholesterol, low-density lipoprotein cholesterol and triglyceride in high cholesterol-diet and Triton WR-1339 models. It also significantly inhibited the decrease of high-density lipoprotein cholesterol in these models. In the clinical trial, Gen-CF significantly lowered total cholesterol, low-density lipoprotein cholesterol, triglyceride, total lipid and phospholipid, with no adverse events, including hepatic or renal toxicity. The data suggest that Gen-CF has the potential to treat hypercholesterolemia and prevent cardiovascular disease.