• Title/Summary/Keyword: 16-Node Element

Search Result 37, Processing Time 0.022 seconds

Pointwise Convergence for the FEM in Poisson Equations by a 1-Irregular Mesh (포아송 방정식에서 1-Irregular Mesh를 이용한 유한요소법의 수렴성에 관한 연구)

  • Lee, Hyoung;Ra, Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1194-1200
    • /
    • 1991
  • The FEM is a computer-aided mathematical technique for obtaining approximate solution to the differential equations. The pointwise convergence defines the relationship between the mesh size and the tolerance. This will play an important role in improving quality of finite element approximate solution. In the paper. We evaluate the convergence on a certain unknown point with a 1-irregular mesh refinement and spectral order enrichment. This means that the degree of freedom is minimized within a tolerance.

  • PDF

Topology Optimization of Plane Structures with Multiload Case using a Lower order Finite Element (저차 유한요소를 이용한 다하중 경우를 가지는 평면구조물의 위상최적화)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • An optimization Program is developed to produce new topologies of plane structures under multiload case. A four-node finite element is used in the response analysis to reduce the computation time and to ultimately achieve practical topology optimization. The bilinear finite element is prone to produce chequer-boarding phenomenon and a simple filtering process is therefore adopted. An artificial material model is employed to represent the structural material and the resizing algorithm based on the optimality criteria is adopted to update the material density parameter during optimization process. With newly developed optimization program, the comparison study has been made between single and multiload cases and its results are described in this paper. From numerical results, it appears that multiload case should be considered to achieve the practical topology optimization.

Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators (압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화)

  • 송명관;한인선;김선훈;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.183-195
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free nitration control for the beam structures with bonded plate-tyPe Piezoelectric sensors and actuators is proposed.

Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems (축대칭 문제에서의 동적 응력확대계수의 계산)

  • 이성희;심우진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.

Development of Shaft Analysis Model for Power Transmission System Optimization (동력전달 시스템의 최적화를 위한 축 해석 모델 개발)

  • Lee, Ju-Yeon;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.8-16
    • /
    • 2021
  • This study develops a shaft analysis model for the optimization of the power transmission system. The finite element method was used for the shaft analysis model. The shaft and gear were assumed Timoshenko beams. Strength was evaluated according to DIN 743, and gear misalignment was calculated through ISO 6336 and the coordinate system rotation. The analysis software for a power transmission system was developed using Visual Studio 2019. The analysis results of the developed program were compared with those of commercial software (MASTA, KISSsoft, and Romax). We confirmed that the force, deformation, and safety factors at each node were the same as those of the commercial software. The absolute value of the gear misalignment of the developed program and commercial software was different. However, the gear misalignment tended to increase with increasing the displacement in the tooth width direction.

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

Analysis of Mechanical Behavior for a Pultruded-Wound Hollow Rod of Unsaturated Polyester Resin(UP) with Glass Fibers (인발-와인딩에 의한 불포화수지 섬유강화 중공봉의 기계적 거동해석)

  • Kim, Zoh-Gweon;Lin, Ye
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Analysis of mechanical behavior for a pultruded-wound hollow rod is presented. For this purpose, the pultruded-wound hollow rod is manufactured by the new winder attached to the conventional pultrusion system. And the conventional pultrusion process is newly altered to manufacture pultruded-wound specimens. A computer program, POST II, is modified to perform this study, In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piolar-Kirchhoff stress tensor and the Green strain tensor are used. For the finite element modeling of the composite hollow rod, the eight-node degenerated shell element is utilized. In order to estimate the failure, the maximum stress criterion is adopted to the averaged stress in the each layer of the finite elements. As numerical examples, the behavior of glass/up composite hollow rod is investigated from the initial loading to the final collapse. Present finite element results considering stiffness degradation and stress unload due to failure shows excellent agreement with experiments in the ultimate load, failure and deformations.

  • PDF

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.

An Analysis of the Dynamic Response and Vibrational Mode for the Cantilevered Beam (외팔보의 동적응답과 진동모드 분석)

  • Kim, Ye-Hyun;Go, Young-Jun;Kang, Byoung-Yong;Chang, Ho-Gyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • As analysis of the forced dynamic response and vibrational mode for the cantilevered beam is described. Experimental results are compared with the natural frequencies and vibrational modes for the cantilevered beam using the theory of Bernoulli-Euler and finite element method. We have found 1st and 2nd resonance frequency of the cantilevered beam by means of the various external frequencies, $1{\sim}70Hz$, using magnetic transducer. And we have studied the vibrational displacement at obtained resonance frequency of the cantilevered beam. The experimental results for the nodes of cantilevered beam were 0 in 1st mode and 0,0.786 in 2nd mode. close agreement between the theoretically predicted results and experimental result was obtained for the vibrational mode.

  • PDF

Miniaturized λ/4 Folded Microstrip Antenna using Parasitic Element for Parking Management System (무급전 소자를 이용한 소형화된 주차장관리시스템용 λ/4 폴디드 마이크로스트립 안테나)

  • Shin, Jae-yoon;Woo, Jong-myung;Park, Chong-hwan;Keum, Jae-min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.144-151
    • /
    • 2017
  • In this paper, the antenna for parking management using wireless communication in outdoor parking environment was proposed. The proposed antenna was miniaturized by using parasitic element to reduce the size of the radiating element of the basic ${\lambda}/2$ microstrip antenna. The dimensions of the proposed antenna are $35mm{\times}35mm{\times}20.1mm$ that is 98.7% smaller than $309.1mm(0.46{\lambda}){\times}296.1mm(0.441{\lambda}){\times}20.1mm(0.029{\lambda})$ of the basic ${\lambda}/2$ microstrip antenna. The electrical characteristics of the antenna are 1.1 dBi at the center frequency of 447 MHz, an omni-directional radiation pattern on the E-plane, and $87.5^{\circ}$ of HPBW on the H-plane. The miniaturized ${\lambda}/4$ folded microstrip antenna using parasitic element has proved to be easy to mount on the wireless repeater, the sensor node installed on the ground, and the strop bar in the outdoor parking environment.