• 제목/요약/키워드: 14 MeV neutron

검색결과 26건 처리시간 0.021초

An Improved Proton Recoil Telescope Detector for Fast Neutron Spectroscopy

  • Chung, Moon-Kyu;Kang, Hee-Dong;Park, Tong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.191-201
    • /
    • 1973
  • MeV 영역의 속중성자분광을 위해 재래의 radiator system을 개량하여 ringshaped vertical radiator와 cone-shaped horizontal radiator를 공용한 특수한 recoil proton radiator assembly를 사용함으로서 energy 분해능의 저하없이 검출효율을 높이도록 recoil Proton telescope detector를 설계ㆍ제작하였다. 이 검출기에는 입사중성자속에 대한 Si(ti) 검출기의 직접노출을 피함으로서 background를 줄일수 있도록 입사중성자차폐부도 고안 내장되어 있다. 이 개량된 recoil proton telescope detector의 검출효율 및 energy 분해능을 중성자 energy 1-15 MeV에 대하여 radiator system과 Si(Li) 검출기사이의 거리변화에 따라 이론적인 계산치로 도출ㆍ표시하였으며, 실험적검증의 예로서 이 거리를 29cm로 하고 중성자 energy를 14.1 MeV로 하였을 때의 검출기의 제특성측정결과를 얻어 분석하였다. 측정결과의 분석에 의하면 이론에서 추정된것처럼 혼합형 radiator system을 사용하였을 때의 검출 효율은 단일 radiator system을 사용한 재래식 검출기의 검출효율의 2.2배의 증가를 보인데 반하여 energy 분해능의 저하는 불과 30%, background의 증가는 약40% 말만임을 알수가 있었다. 또한 측정에 의한 14.1 MeV 중성자에 대한 energy 분해능은 3.9% FWHM었는데, 이는 이논적인 3.7% FWHM와 거의 완전한 일치를 보이고 있음도 입증되였다.

  • PDF

$^{93}Nb(n,n{\alpha})^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$$^{93}Nb(n,2n)^{92m}Nb$ 반응의 14 MeV 중성자 반응 단면적 측정 (Measurement of $^{93}Nb(n,n{\alpha})^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$ and $^{93}Nb(n,2n)^{92m}Nb$ Cross Sections for 14 MeV Neutrons)

  • 김영석;김낙배;정기형;박혜일
    • Nuclear Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.92-96
    • /
    • 1986
  • $^{93}Nb(n,n{\alpha})^{89m}Y$, $^{93}Nb(n,{\alpha})^{90m}Y$$^{93}Nb(n,2n)^{92m}Nb$의 14.6MeV 중성자 반응단면적을 $^{27}Al(n,p)^{27}Mg$$^{27}Al(n,{\alpha})^{24}Na$ 반응 단면적과 비교하여 측정하였다. $T(D,n)^4He$ 반응을 이용하는 소규모 가속기를 중성자 원으로 사용하였으며 시료에서의 중성자 에너지 퍼짐은 0.4MeV 정도였다. 생성된 방사능은 모두 같은 기하학적 조건에서 70cc HPGe 검출기로 측정하였다.

  • PDF

Measurement of undesirable neutron spectrum in a 120 MeV linac

  • Yihong Yan ;Xinjian Tan;Xiufeng Weng ;Xiaodong Zhang ;Zhikai Zhang ;Weiqiang Sun ;Guang Hu ;Huasi Hu
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3591-3598
    • /
    • 2023
  • Photoneutron background spectroscopy observations at linac are essential for directing accelerator shielding and subtracting background signals. Therefore, we constructed a Bonner Sphere Spectrometer (BSS) system based on an array of BF3 gas proportional counter tubes. Initially, the response of the BSS system was simulated using the MCNP5 code. Next, the response of the system was calibrated by using neutrons with energies of 2.86 MeV and 14.84 MeV. Then, the system was employed to measure the spectrum of the 241Am-Be neutron source, and the results were unfolded by using the Gravel and EM algorithms. Using the validated system, the undesirable neutron spectrum of the 120 MeV electron linac was finally measured and acquired. In addition, it is demonstrated that the equivalent undesirable neutron dose at a distance of 3.2 m from the linac is 19.7 mSv/h. The results measured by the above methods could provide guidance for linac-related research.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.

DT 중성자 발생기에 의한 중성자 검출기 반응도 조사 (Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator)

  • 김상인;장인수;김장렬;이정일;김봉환
    • Journal of Radiation Protection and Research
    • /
    • 제37권1호
    • /
    • pp.35-40
    • /
    • 2012
  • 국내 교정기관 또는 표준기관은 중성자 검출기의 교정을 위해 비감속 및 중수감속 $^{252}Cf$ 선원과 $^{241}AmBe$ 선원을 사용하고 있다. 이런 선원들로 교정된 중성자 검출기를 이용하여 입자가속기와 같이 속중성자가 다량 존재하는 시설을 선량평가할 때, 그 정확도가 떨어지게 된다. 그 이유는, 대부분의 중성자 검출기는 열중성자에 민감하게 반응하므로 수 MeV 이상의 에너지를 가지는 속중성자장에 대한 선량당량 반응도는 부정확하다. 또한 높은 에너지의 중성자는 열중성자보다 선량기여정도가 훨씬 크기 때문이다. 이와 같은 이유로, 기존의 교정용 기준 중성자장이 아닌 수 MeV 이상의 속중성자가 존재하는 중성자장에서도 검출기를 교정할 필요가 있다. DT 중성자 발생기, 흑연집합체 그리고 폴리에틸렌 중성자 집속체를 사용하여 속중성자의 선속분율이 서로 다른 중성자장을 제작하였고, 이 중성자장에서 중성자 검출기의 선량당량 반응도를 측정하였다. 시험결과에 의하면, 속중성자 선속분율과 중성자 검출기의 종류에 따라 중성자 검출기의 반응도는 많은 차이를 보였다. 이러한 반응도 차이는 선량당량의 과대 및 과소평가를 의미하므로, 검출기가 사용되는 시설환경과 유사한 중성자장에서 반응도 교정이 필요함을 확인하였다.

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar;Sejal Shah;S. Vala;M. Abhangi;A. Chakraborty
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.402-409
    • /
    • 2024
  • High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.

Estimation of the neutron production of KSTAR based on empirical scaling law of the fast ion stored energy and ion density under NBI power and machine size upgrade

  • Kwak, Jong-Gu;Hong, S.C.
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2334-2337
    • /
    • 2022
  • Deuterium-tritium reaction is the most promising one in term of the highest nuclear fusion cross-section for the reactor. So it is one of urgent issues to develop materials and components that are simultaneously resistant to high heat flux and high energy neutron flux in realization of the fusion energy. 2.45 MeV neutron production was reported in D-D reaction in KSTAR and regarded as beam-target is the dominant process. The feasibility study of KSTAR to wide area neutron source facility is done in term of D-D and D-T reactions from the empirical scaling law from the mixed fast and thermal stored energy and its projection to cases of heating power upgrade and DT reaction is done.

Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Lemaire, Matthieu;Lee, Hyunsuk;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1355-1366
    • /
    • 2020
  • A review of the documentation and an interpretation of the NEA-1517/74 and NEA-1517/80 shielding benchmarks (measurements of photon leakage flux from a hollow sphere with a central 14 MeV neutron source) from the SINBAD database with the Monte Carlo code MCS and the most up-to-date ENDF/B-VIII.0 neutron data library are conducted. The two analyzed benchmarks describe satisfactorily the energy resolution of the photon detector and the geometry of the spherical samples with inner beam tube, tritium target and cooling water circuit, but lack information regarding the detector geometry and the distances of shields and collimators relatively to the neutron source and the detector. Calculations are therefore conducted for a sphere model only. A preliminary verification of MCS neutron-photon calculations against MCNP6.2 is first conducted, then the impact of modelling the inner beam tube, tritium target and cooling water circuit is assessed. Finally, a comparison of calculated results with the libraries ENDF/B-VII.1 and ENDF/B-VIII.0 against the measurements is conducted and shows reasonable agreement. The MCS and MCNP inputs used for the interpretation are available as supplementary material of this article.

Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

  • Pyeon, Cheol Ho;Yamanaka, Masao;Kim, Song-Hyun;Vu, Thanh-Mai;Endo, Tomohiro;Van Rooijen, Willem Fredrik G.;Chiba, Go
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1234-1239
    • /
    • 2017
  • Basic research on the accelerator-driven system is conducted by combining $^{235}U$-fueled and $^{232}Th$-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons) and the proton beam accelerator (100 MeV protons with a heavy metal target). The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-${\alpha}$ method, and the neutron source multiplication method.

Microstructure and Mechanical Property of Irradiated Zr-2.5Nb Pressure Tube in Wolsong Unit-1

  • 김영숙;안상복;오동준;김성수;정용무
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.241-241
    • /
    • 1999
  • With the aim of assessing the degradation of Zr-2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr-2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306℃ and a neutron fluence of 8.9×$10^{21}$ n/cm²(E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300℃. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×$10^{21}$ n/cm²(E>1 MeV) yielded an increase in a-type dislocation density of the Zr-2.5Nb pressure tube to 7.5×$10^{14} m^{-2}$, which was highest at the inlet of the tube exposed to the low temperature of 275℃. In contrast, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×$10^{14} m^{-2}$ over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17-26% in the transverse direction and by 34-39% in the longitudinal direction compared to that of the unirradiated tube at 300℃. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.