• Title/Summary/Keyword: 1-type Gauss map

Search Result 34, Processing Time 0.018 seconds

HELICOIDAL SURFACES AND THEIR GAUSS MAP IN MINKOWSKI 3-SPACE

  • Choi, Mie-Kyung;Kim, Young-Ho;Liu, Huili;Yoon, Dae-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.859-881
    • /
    • 2010
  • The helicoidal surface is a generalization of rotation surface in a Minkowski space. We study helicoidal surfaces in a Minkowski 3-space in terms of their Gauss map and provide some examples of new classes of helicoidal surfaces with constant mean curvature in a Minkowski 3-space.

On the Gauss Map of Tubular Surfaces in Pseudo Galilean 3-Space

  • Tuncer, Yilmaz;Karacan, Murat Kemal;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.497-507
    • /
    • 2022
  • In this study, we define tubular surfaces in Pseudo Galilean 3-space as type-1 or type-2. Using the X(s, t) position vectors of the surfaces and G(s, t) Gaussian transformations, we obtain equations for the two types of tubular surfaces that satisfy the conditions ∆X(s, t) = 0, ∆X(s, t) = AX(s, t), ∆X(s, t) = λX(s, t), ∆X(s, t) = ∆G(s, t), ∆G(s, t) = 0, ∆G(s, t) = AG(s, t) and ∆G(s, t) = λG(s, t).

SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C)

  • Baba-Hamed, Chahrazede;Bekkar, Mohammed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1061-1067
    • /
    • 2013
  • In this paper, we study surfaces of revolution without parabolic points in 3-Euclidean space $\mathbb{R}^3$, satisfying the condition ${\Delta}^{II}G=f(G+C)$, where ${\Delta}^{II}$ is the Laplace operator with respect to the second fundamental form, $f$ is a smooth function on the surface and C is a constant vector. Our main results state that surfaces of revolution without parabolic points in $\mathbb{R}^3$ which satisfy the condition ${\Delta}^{II}G=fG$, coincide with surfaces of revolution with non-zero constant Gaussian curvature.