KYUNGPOOK Math. J. 62(2022), 497-507
https://doi.org/10.5666/KMJ.2022.62.3.497
pISSN 1225-6951 eISSN 0454-8124
(C) Kyungpook Mathematical Journal

On the Gauss Map of Tubular Surfaces in Pseudo Galilean 3-Space

Yilmaz Tunçer*
Department of Mathematics, Usak University, Usak 64200, Turkey
e-mail: yilmaz.tuncer@usak.edu.tr
Murat Kemal Karacan
Department of Mathematics, Usak University, Usak 64200, Turkey
e-mail: murat.karacan@usak.edu.tr
Dae Won Yoon
Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
e-mail: dwyoon@gsnu.ac.kr
Abstract. In this study, we define tubular surfaces in Pseudo Galilean 3-space as type-1 or type-2. Using the $X(s, t)$ position vectors of the surfaces and $G(s, t)$ Gaussian transformations, we obtain equations for the two types of tubular surfaces that satisfy the conditions $\Delta X(s, t)=0, \Delta X(s, t)=A X(s, t), \Delta X(s, t)=\lambda X(s, t), \Delta X(s, t)=\Delta G(s, t)$, $\Delta G(s, t)=0, \Delta G(s, t)=A G(s, t)$ and $\Delta G(s, t)=\lambda G(s, t)$.

1. Introduction

Due to their physical importance in curve and surface theory, Galilean and Pseudo Galilean geometries have been widely studied in recent years. The Cayley Klein geometry with projective signature $(0,0,+,-)$ is an example of a Pseudo Galilean geometry, for detailed information see [5]. The absolute structure of a Pseudo Galilean geometry is represented by an ordered triple $\{w, f, I\}$ consising of its ideal plane w, a line f in w and the fixed hyperbolic involution I of points of f. Pseudo Galilean 3-space, denoted as G_{3}^{1}, is equipped with the scalar product g defined by

$$
g(X, Y)=\left\{\begin{array}{cc}
x_{1} y_{1} & \text { if }
\end{array} \quad x_{1} \neq 0 \vee y_{1} \neq 0.0 .\right.
$$

* Corresponding Author.

Received March 21, 2021; revised December 7, 2021; accepted December 10, 2021. 2010 Mathematics Subject Classification: 53A35,53B25.
Key words and phrases: Tubular surfaces, Gauss map, pointwise 1-type Gauss map, Pseudo Galilean 3-Space.
for any vectors $X=\left(x_{1}, x_{2}, x_{3}\right), Y=\left(y_{1}, y_{2}, y_{3}\right) \in G_{3}^{1}$. The Pseudo Galilean norm of a vector X defined by

$$
\|X\|=\left\{\begin{array}{ccc}
x_{1} & \text { if } & x_{1} \neq 0 \\
\sqrt{\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}} & \text { if } & x_{1}=0
\end{array}\right.
$$

A vector $X=\left(x_{1}, x_{2}, x_{3}\right)$ in Pseudo Galilean 3-space is called a non-isotropic vector if $x_{1} \neq 0$, and is otherwise X is called an isotropic vector. The cross product is defined by

$$
X \wedge_{G_{3}^{1}} Y=\left\{\left.\begin{array}{ccc}
0 & -e_{2} & e_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array} \right\rvert\, \quad \text { if } \quad x_{1} \neq 0 \vee y_{1} \neq 0\right.
$$

All unit non-isotropic vectors are of the form $\left(1, x_{2}, x_{3}\right)$. The vector X is called an isotropic space-like vector if $\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}>0$ satisfies and X is called an isotropic time-like vector if $\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}<0$ satisfies. If $\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}=0$ then X is called an isotropic lightlike vector, in this case $x_{2}= \pm x_{3}$. If $\left(x_{2}\right)^{2}-\left(x_{3}\right)^{2}= \pm 1$ then X is called a non-lightlike isotropic vector $[6,1,3]$. A curve $\gamma: I \subset \mathbb{R} \longrightarrow G_{3}^{1}$ defined by $\gamma(s)=(x(s), y(s), z(s))$ is an admissible curve if none of the points are inflection points, all the tangents and the normal vectors are non-isotropic at each points of the curve. If the curve $\gamma(s)$ is an admissible curve with the arc length parameter s then the position vector of $\gamma(s)$ is

$$
\begin{equation*}
\gamma(s)=(s, p(s), q(s)) \tag{1.1}
\end{equation*}
$$

The curvature $\kappa(s)$ and the torsion $\tau(s)$ are defined by

$$
\begin{equation*}
\kappa(s)=\sqrt{\left|\left(p^{\prime \prime}(s)\right)^{2}-\left(q^{\prime \prime}(s)\right)^{2}\right|}, \quad \tau(x)=\frac{p^{\prime \prime}(s) q^{\prime \prime \prime}(s)-p^{\prime \prime \prime}(s) q^{\prime \prime}(s)}{\kappa^{2}(s)} \tag{1.2}
\end{equation*}
$$

An admissible curve has no inflection points, no isotropic tangents or normals whose projections on the absolute plane would be light-like vectors. The Frenet trihedron is given by

$$
\begin{align*}
T(s) & =\gamma^{\prime}(s)=\left(1, p^{\prime}(s), q^{\prime}(s)\right) \\
N(s) & =\frac{1}{\kappa(s)}\left(0, p^{\prime \prime}(s), q^{\prime \prime}(s)\right) \tag{1.3}\\
B(s) & =\frac{1}{\kappa(s)}\left(0, \epsilon q^{\prime \prime}(s), \epsilon p^{\prime \prime}(s)\right)
\end{align*}
$$

where $\epsilon=\mp 1$, under the condition $\operatorname{det}(T, N, B)=1$. This requires that

$$
\left|\left(p^{\prime \prime}(s)\right)^{2}-\left(q^{\prime \prime}(s)\right)^{2}\right|=\epsilon\left(\left(p^{\prime \prime}(s)\right)^{2}-\left(q^{\prime \prime}(s)\right)^{2}\right)
$$

Thus the principal normal vector, or simply normal, is space-like if $\epsilon=1$ and timelike if $\epsilon=-1$. The curve γ given by (1.1) is time-like (resp. space-like) if $N(s)$ is a space-like (resp. time-like) vector. The following Serret-Frenet formulas hold

$$
\begin{equation*}
T^{\prime}(s)=\kappa(s) N(s), \quad N^{\prime}(s)=\tau(s) B(s), \quad B^{\prime}(s)=\tau(s) N(s) \tag{1.4}
\end{equation*}
$$

for derivatives of the tangent vector $T(s)$, the normal vector $N(s)$ and the binormal vector $B(s)$, respectively $[6,1,7,3]$. Karacan and Tunçer studied Weingarten and linear Weingarten type tubular surfaces in Galilean and Pseudo Galilean spaces[4]. They also studied also surfaces in the same spaces[8]. D.W. Yoon, studied the Gauss Map of Tubular Surfaces in Galilean space and classified them in [9]. For an open subset $D \subseteq R^{2}$ and for a C^{r}-immersion $X: D \rightarrow G_{3}^{1}$, the set $\Phi=X(D)$ is called a regular C^{r}-surface(for $r \geq 2$) in Pseudo Galilean 3-space. If X is a C^{r}-embedding then the set Φ is called a simple C^{r}-surface(for $r \geq 2$). If the C^{r}-surface Φ does not have pseudo-Euclidean tangent planes then Φ is called admissible C^{r}-surface. Let us denote

$$
X=X\left(x\left(u_{1}, u_{2}\right), y\left(u_{1}, u_{2}\right), z\left(u_{1}, u_{2}\right)\right),
$$

and

$$
x_{, i}=\frac{\partial x}{\partial u_{i}}, y_{, i}=\frac{\partial y}{\partial u_{i}}, z_{, i}=\frac{\partial z}{\partial u_{i}}
$$

then Φ is an admissible surface if and only if $x_{i} \neq 0$ for some $i=1,2$. Assume that $\Phi \subset G_{3}^{1}$ is a regular admissible surface. The unit normal vector field of Φ is

$$
\eta(u, v)=\frac{\left(0, x_{1} z_{2}-x_{2} z_{1}, x_{1} y_{2}-x_{2} y_{1}\right)}{W(u, v)}
$$

where $W(u, v)=\sqrt{\left|\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}-\left(x_{1} z_{2}-x_{2} z_{1}\right)^{2}\right|}$. The function $W(u, v)$ is equal to the Pseudo Galilean norm of the isotropic vector $x_{, 1} X_{, 2}-x_{, 2} X_{, 1}$. The vector

$$
\rho(u, v)=\frac{\left(x_{, 1} X_{, 2}-x_{, 2} X_{, 1}\right)}{W}
$$

is called a side tangential vector. Throughout the study we will consider the surfaces with $W \neq 0[8,10]$. Since we have $g(\eta, \eta)=\epsilon= \pm 1$, we consider two types of admissible surfaces: space-like surfaces having time-like surface normals $(\epsilon=-1)$, and time-like surfaces having space-like normals $(\epsilon=1)$. The first fundamental form (F.F.F.) of a surface in G_{3}^{1} is defined by

$$
d s^{2}=\left(g_{1} d u_{1}+g_{2} d u_{2}\right)^{2}+\delta\left(h_{11} d u^{2}+2 h_{12} d u d v+h_{22} d v^{2}\right),
$$

where

$$
\begin{gather*}
g_{i}=x_{, i}, \tag{1.5}\\
h_{i j}=g\left(\widetilde{X}_{, i}, \widetilde{X}_{, j}\right) \tag{1.6}
\end{gather*}
$$

and

$$
\delta= \begin{cases}0 & ; \text { if direction } d u_{1}: d u_{2} \text { is non-isotropic } \\ 1 & ; \text { if direction } d u_{1}: d u_{2} \text { is isotropic. }\end{cases}
$$

$[8,10]$. For a vector x, \widetilde{x} denotes the projection the vector onto the pseudo-Euclidean plane yoz.

In this study, we denote the components of $d s^{2}$ by $\widetilde{g}_{i j}$. Furthermore, according to the local coordinate system $\left\{u_{1}, u_{2}\right\}$ of the surface $X(u, v)$ the Laplacien operator Δ of the F.F.F. is defined by

$$
\begin{equation*}
\Delta=\frac{1}{\sqrt{\left|\operatorname{det}\left[\widetilde{g}_{i j}\right]\right|}} \sum_{i, j=1}^{2} \frac{\partial}{\partial u_{i}}\left(\sqrt{\left|\operatorname{det}\left[\widetilde{g}_{i j}\right]\right| \widetilde{g}^{i j}} \frac{\partial}{\partial u_{j}}\right), \tag{1.7}
\end{equation*}
$$

where $\left[\widetilde{g}^{i j}\right]=\left[\widetilde{g}_{i j}\right]^{-1}[9,10]$.

2. Tubular Surfaces in Pseudo Galilean 3-Space

In this section, we will classify the admissible tubular surfaces in G_{3}^{1} satisfying the equations $\Delta X=0, \Delta X=A X, \Delta X=\lambda X, \Delta X=\Delta G, \Delta G=0, \Delta G=A G$ and $\Delta G=\lambda X$ where X is the position vector of tubular surface, G is the Gauss map of tubular surface, λ is nonzero constant, $A \in \operatorname{Mat}(3, \mathbb{R})$ and Δ is the Laplacien operator of the surface. Y.Tunçer and M.K.Karacan defined the canal surfaces in Pseudo Galilean 3-Spaces in [8]. Generalising this, we definition tubular surfaces in pseudo galilean 3 -space. Let $\gamma:(a, b) \rightarrow G_{3}^{1}$ be an admissible curve satisfying (1.1), and let M be a tubular surface with the centered curve $\gamma(s)$. There are two types non-isotropic tubular surfaces in G_{3}^{1}.

Type-1: If M is space-like (time-like) tubular surface and $\gamma(s)$ is space-like (time-like) curve then M is parametrized by

$$
\begin{equation*}
X^{\mu}(s, t)=\gamma(s)+r \cosh (t) N(s)+r \sinh (t) B(s), \tag{2.1}
\end{equation*}
$$

$\mu= \begin{cases}+1 & \text { if } M \text { is a space-like canal surface with space-like centered curve } \\ -1 & \text { if } M \text { is a time-like canal surface with time-like centered curve. }\end{cases}$
Type-2: If M is space-like (time-like) tubular surface and $\gamma(s)$ is time-like (space-like) curve then M is parametrized by

$$
\begin{equation*}
X^{\sigma}(s, t)=\gamma(s)+r \sinh (t) N(s)+r \cosh (t) B(s), \tag{2.2}
\end{equation*}
$$

$$
\sigma= \begin{cases}+1 & \text { if } M \text { is a space-like canal surface with time-like centered curve } \\ -1 & \text { if } M \text { is a time-like canal surface with space-like centered curve. }\end{cases}
$$

Let M be a type- 1 tubular surface in G_{3}^{1} is parametrized by (2.1), then we have the natural frame $\left\{X_{s}^{\mu}, X_{t}^{\mu}\right\}$ of M given by

$$
\begin{aligned}
& X_{s}^{\mu}(s, t)=T(s)+r \tau(s) \sinh (t) N(s)+r \tau(s) \cosh (t) B(s) \\
& X_{t}^{\mu}(s, t)=r \sinh (t) N(s)+r \cosh (t) B(s)
\end{aligned}
$$

and from (1.4), (1.5) and (1.6), we have

$$
g_{1}=1, g_{2}=0, h_{11}=\mu r^{2} \tau(s)^{2}, h_{21}=h_{12}=\mu r^{2} \tau(s), h_{22}=\mu r^{2}
$$

which are the components of F.F.F., so we obtain the $\widetilde{g}_{i j}$ as

$$
\widetilde{g}_{11}=1+\mu r^{2} \tau(s)^{2}, \widetilde{g}_{12}=\widetilde{g}_{21}=\mu r^{2} \tau(s), \widetilde{g}_{22}=\mu r^{2} .
$$

By a direct computation using the equation (1.7), the Laplacian operator Δ on M is

$$
\begin{equation*}
\Delta=\frac{\left(\mu r^{2} \tau(s)^{2}+1\right)}{\mu r^{2}} \frac{\partial^{2}}{\partial t^{2}}-\tau^{\prime}(s) \frac{\partial}{\partial t}-2 \tau(s) \frac{\partial^{2}}{\partial t \partial s}+\frac{\partial^{2}}{\partial s^{2}} . \tag{2.3}
\end{equation*}
$$

Suppose that M satisfies $\Delta X^{\mu}(s, t)=A X^{\mu}(s, t)$, with the matrix $A \in \operatorname{Mat}(3, \mathbb{R})$, then from (2.1) and (2.3) we obtain the equality
$\frac{1}{\mu r}\{(\mu r \kappa(s)+\cosh (t)) N(s)+\sinh (t) B(s)\}=A \gamma(s)+r \cosh (t) A N(s)+r \sinh (t) A B(s)$,
so it is easy to see that the equality $\Delta X^{\mu}(s, t)=0$ is not satisfied for type- 1 tubular surface. Hence we give the following theorem.
Theorem 2.1. There is not any harmonic type-1 tubular surface given by (2.1) in G_{3}^{1}.
For the other cases, we give the following theorem.
Theorem 2.2. Let M be a type-1 tubular surface given by (2.1) in G_{3}^{1}. M satisfies $\Delta X^{\mu}(s, t)=A X^{\mu}(s, t), A \in \operatorname{Mat}(3, \mathbb{R})$ if

$$
\begin{equation*}
2 \kappa^{\prime}(s) \tau(s)+\kappa(s) \tau^{\prime}(s)=0 \quad, \quad \frac{\kappa^{\prime \prime}(s)}{\kappa(s)}+\tau(s)^{2}=\frac{1}{\mu r^{2}} . \tag{2.5}
\end{equation*}
$$

Proof. Differentiating (2.1) with respect to t we get
$\left(\Delta X^{\mu}(s, t)\right)_{t}=\frac{1}{\mu r}\{(\sinh (t)) N(s)+\cosh (t) B(s)\}=r \sinh (t) A N(s)+r \cosh (t) A B(s)$.
Taking the derivative (2.6) with respect to t, we have
$\left(\Delta X^{\mu}(s, t)\right)_{t t}=\frac{1}{\mu r}\{\cosh (t) N(s)+\sinh (t) B(s)\}=r \cosh (t) A N(s)+r \sinh (t) A B(s)$.
Combining (2.6) and (2.7) we can obtain the following two equation

$$
\begin{align*}
A N(s) & =\frac{1}{\mu r^{2}} N(s), \tag{2.8}\\
A B(s) & =\frac{1}{\mu r^{2}} B(s) . \tag{2.9}
\end{align*}
$$

On the other hand, from (2.4), (2.7) and (2.8)

$$
\begin{equation*}
A \gamma(s)=\kappa(s) N(s) \tag{2.10}
\end{equation*}
$$

and differentiating (2.9) with respect to s and by using (2.7) and (2.8), we have

$$
\begin{equation*}
A T(s)=\kappa^{\prime}(s) N(s)+\kappa(s) \tau(s) B(s) . \tag{2.11}
\end{equation*}
$$

By taking the derivative (2.11) with respect to s, we get

$$
\begin{equation*}
(A T(s))^{\prime}=\left(\kappa^{\prime \prime}(s)+\kappa(s) \tau(s)^{2}\right) N(s)+\left(\kappa^{\prime}(s) \tau(s)+(\kappa(s) \tau(s))^{\prime}\right) B(s) . \tag{2.1.1}
\end{equation*}
$$

By considering $(A T(s))^{\prime}=A T^{\prime}(s)=\kappa(s) A N(s)$ in (2.12) and from (2.8), we obtain

$$
\begin{equation*}
2 \kappa^{\prime}(s) \tau(s)+\kappa(s) \tau^{\prime}(s)=0 \quad, \frac{\kappa^{\prime \prime}(s)}{\kappa(s)}+\tau(s)^{2}=\frac{1}{\mu r^{2}} . \tag{2.13}
\end{equation*}
$$

Thus, this completes the proof.
From the first equation of (2.5), we can obtain

$$
\begin{equation*}
\kappa^{2}(s)=\frac{a}{\tau(s)} \tag{2.14}
\end{equation*}
$$

and by using the second equation of (2.5), we have

$$
\begin{equation*}
\frac{\kappa^{\prime \prime}(s)}{\kappa(s)}+\frac{a}{\kappa^{4}(s)}=\frac{1}{\mu r^{2}} . \tag{2.15}
\end{equation*}
$$

Equation (2.15) has complex solutions but in the case of $\kappa(s)$ and $\tau(s)$ are constant, then (2.15) has the real solution. Thus we can give following corollary as a remark of theorem 2.2.
Corollary 2.3. Let M be a type-1 tubular surface given by (2.1) in G_{3}^{1}. If M satisfies

$$
\Delta X^{\mu}(s, t)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{\mu r^{2}} & 0 \\
0 & 0 & \frac{1}{\mu r^{2}}
\end{array}\right] X^{\mu}(s, t)
$$

then M is one of the following.
i. M is a type- 1 surface determined by

$$
\begin{aligned}
X^{\mu}(s, t)= & \left(s, c_{1} s^{2}+c_{2} s+c_{3}+2 r c_{1} \cosh (t)+2 r d_{1} \sinh (t)\right. \\
& \left., d_{1} s^{2}+d_{2} s+d_{3}+2 r d_{1} \cosh (t)+2 r c_{1} \sinh (t)\right)
\end{aligned}
$$

where $d_{1} \neq 0, c_{1} \neq 0, c_{2}, c_{3}, d_{2}, d_{3}$ are constants (for time-like centered curve $c_{1}>d_{1}$ and for space-like centered curve $c_{1}<d_{1}$, see Figures 1 and 2).
ii. M is a type- 1 surface determined by

$$
X^{\mu}(s, t)=\left(s, c_{1} s^{2}+c_{2} s+c_{3}+2 r c_{1} \cosh (t), d_{1} s+d_{2}+2 r c_{1} \sinh (t)\right)
$$

or

$$
X^{\mu}(s, t)=\left(s, c_{1} s+c_{2}+2 d_{1} r \sinh (t), d_{1} s^{2}+d_{2} s+d_{3}+2 d_{1} r \cosh (t)\right)
$$

where $d_{1} \neq 0, c_{1} \neq 0, c_{2}, c_{3}, d_{2}, d_{3}$ are constants (see Figures 3 and 4).
iii. M is a type- 1 space-like surface determined by

$$
X^{\mu}(s, t)=\left(s, r \sqrt{a^{2}-1} \cosh (t)+r a \sinh (t), r a \cosh (t)+r \sqrt{a^{2}-1} \sinh (t)\right)
$$

where $a>1$ is constant (see Figure 3). The Gauss map G of type-1 tubular surface M is

$$
G(s, t)=\cosh (t) N(s)+\sinh (t) B(s)
$$

and from (2.3), we find

$$
\begin{equation*}
\Delta G(s, t)=\frac{1}{\mu r^{2}}\{\cosh (t) N(s)+\sinh (t) B(s)\} \tag{2.16}
\end{equation*}
$$

Thus, it is easy to see that, following theorem holds.
Theorem 2.4. Let M be a type-1 tubular surface given by (2.1) in G_{3}^{1} then followings are true.
i. There are no type-1 tubular surface given by (2.1) in G_{3}^{1} with the Gauss map G being harmonic.
ii. All type- 1 tubular surfaces satisfy $\Delta G(s, t)=\lambda G(s, t), \lambda \neq 0$.
iii. All type-1 tubular surface satisfy $\Delta G(s, t)=A G(s, t)$ where $A=\frac{1}{\mu r^{2}} I_{3}$.

As a result of Theorem 2.4., we can say M has a type-1 Gauss map $G(s, t)$ in the sense of Chen [2].

Assume that M satisfy $\Delta X^{\mu}(s, t)=\Delta G(s, t)$. From (2.3) and (2.16)
$\frac{1}{\mu r^{2}}\{(\mu r \kappa(s)+\cosh (t)) N(s)+\sinh (t) B(s)\}=\frac{1}{\mu r^{2}}\{\cosh (t) N(s)+\sinh (t) B(s)\}$,
and so $\kappa=0$. Thus we get following theorem.
Theorem 2.5. Let M be a type-1 space-like tubular surface given by (2.1) in G_{3}^{1}, then M satisfies $\Delta X^{\mu}(s, t)=\Delta G(s, t)$ if its position vector is

$$
X^{\mu}(s, t)=\left(s, r \sqrt{a^{2}-1} \cosh (t)+r a \sinh (t), r a \cosh (t)+r \sqrt{a^{2}-1} \sinh (t)\right)
$$

where $a>1 \in \mathbb{R}$ and $r>0$.
Let M be a type- 2 tubular surface G_{3}^{1} parametrized by (2.2), then we have the
natural frame $\left\{X_{s}^{\sigma}(s, t), X_{t}^{\sigma}(s, t)\right\}$ of M given by

$$
\begin{align*}
X^{\sigma}(s, t) & =\gamma(s)+r(s) \sinh (t) N(s)+r(s) \cosh (t) B(s) \tag{2.18}\\
X_{s}^{\sigma}(s, t) & =T(s)+r \tau(s) \cosh (t) N(s)+r \tau(s) \sinh (t) B(s) \\
X_{t}^{\sigma}(s, t) & =r \cosh (t) N(s)+r \sinh (t) B(s)
\end{align*}
$$

and we have

$$
g_{1}=1, g_{2}=0, h_{11}=\sigma r^{2}(s) \tau(s)^{2}, h_{12}=\sigma r^{2}(s) \tau(s), h_{12}=\sigma r^{2}(s)
$$

which are the components of F.F.F.

$$
\widetilde{g}_{11}=1+\sigma r^{2}(s) \tau(s)^{2}, \widetilde{g}_{12}=\widetilde{g}_{21}=\sigma r^{2}(s) \tau(s), \widetilde{g}_{11}=\sigma r^{2}(s)
$$

and the Laplacian operator Δ on M is obtained as

$$
\begin{equation*}
\Delta=\left\{\frac{\left(\sigma r^{2} \tau(s)^{2}+1\right)}{\sigma r^{2}} \frac{\partial^{2}}{\partial t^{2}}-\tau^{\prime}(s) \frac{\partial}{\partial t}-2 \tau(s) \frac{\partial^{2}}{\partial t \partial s}+\frac{\partial^{2}}{\partial s^{2}}\right\} . \tag{2.19}
\end{equation*}
$$

The Gauss map $G(s, t)$ of type- 1 tubular surface M is

$$
\begin{equation*}
G(s, t)=\sinh (t) N(s)+\cosh (t) B(s) \tag{2.20}
\end{equation*}
$$

and Laplacians of $X^{\sigma}(s, t)$ and $G(s, t)$ are

$$
\begin{equation*}
\Delta X^{\sigma}(s, t)=\frac{1}{\sigma r}\{(\sigma r \kappa(s)+\sinh (t)) N(s)+\cosh (t) B(s)\} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta G(s, t)=\frac{1}{\sigma r^{2}}\{\sinh (t) N(s)+\cosh (t) B(s)\} \tag{2.22}
\end{equation*}
$$

respectively. We can also obtain similar results for type-2 surfaces in G_{3}^{1} by using (2.18), (2.21) and (2.22).

Example 2.2. Timelike tube with time-like centered curve satisfying $\Delta X^{\mu}(s, t)=$ $A X^{\mu}(s, t)$ where $A=\frac{1}{-4} I_{3}$

$$
X^{\mu}(s, t)=\left(s, 2 s^{2}+2 s+\frac{2 \cosh (t)+\sinh (t)}{3}, s^{2}+s+1+\frac{\cosh (t)+2 \sinh (t)}{3}\right)
$$

(a) Figure 1

Spacelike tube with space-like centered curve satisfying $\Delta X^{\mu}(s, t)=A X^{\mu}(s, t)$ where $A=\frac{1}{4} I_{3}$

$$
X^{\mu}(s, t)=\left(s, s^{2}+2 s+\frac{\cosh (t)-2 \sinh (t)}{3}, 2 s^{2}+s+1+\frac{2 \cosh (t)-\sinh (t)}{3}\right)
$$

(b) Figure 2

Timelike tube with time-like centered curve satisfying $\Delta X^{\mu}(s, t)=A X^{\mu}(s, t)$ where $A=\frac{1}{-4} I_{3}$

$$
X^{\mu}(s, t)=\left(s, 2 s^{2}+2 s+1+\frac{1}{2} \cosh (t), s+1+\frac{1}{2} \sinh (t)\right)
$$

Spacelike tube with space-like centered curve satisfying $\Delta X^{\mu}(s, t)=A X^{\mu}(s, t)$

(c) Figure 3
where $A=\frac{1}{4} I_{3}$

$$
X^{\mu}(s, t)=\left(s, 2 s+1-\frac{1}{2} \sinh (t), 2 s^{2}+s+1+\frac{1}{2} \cosh (t)\right)
$$

(d) Figure 4

Acknowledgements. The authors are indebted to the referees for helpful suggestions and insights concerning the presentation of this paper.

References

[1] M. Akyigit and A. Z. Azak, Admissible Mannheim Curves in Pseudo Galilean Space G_{3}^{1}, Afr. Diaspora J. Math., 10(2)(2010), 58-65.
[2] B. Y. Chen, A report on submanifold of finite type, Soochow J. Math., 22(1996), 117-337
[3] B. Divjak, Curves in Pseudo Galilean Geometry, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 41(1998), 117-128.
[4] M. K. Karacan and Y. Tunçer, Tubular Surfaces of Weingarten Types in Galilean and Pseudo Galilean Spaces, Bull. Math. Anal. Appl., 5(2)(2013), 87-100.
[5] E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge Algebra Geom., 38(1997), 261-288.
[6] H. B. Oztekin, Weakened Bertrand curves in The Galilean Space G_{3}^{1}, J. Adv. Math. Stud., 2(2)(2009), 69-76.
[7] H. Öztekin, H. Bozok, Position vectors of admissible curves in 3-dimensional Pseudo Galilean space G_{3}^{1}, Int. Electron. J. Geom., 8(1)(2015), 21-32.
[8] Y. Tunçer and M. K. Karacan, Canal Surfaces in Pseudo-Galilean 3-Spaces, Kyungpook Math. J. 60(2)(2020), 361-373.
[9] D. W. Yoon, On the Gauss Map of Tubular Surfaces in Galilean 3-space, Int. J. Math. Anal., 8(45)(2014), 2229-2238.
[10] D. W. Yoon, Surfaces of revolution in the three dimensional Pseudo Galilean space, Glas. Mat. Ser. III, 48(2013), 415-428.

