• 제목/요약/키워드: 1-commutative algebra

검색결과 83건 처리시간 0.028초

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.

ON KU-ALGEBRAS CONTAINING (α, β)-US SOFT SETS

  • Ansari, Moin A.;Koam, Ali N.A.;Haider, Azeem
    • Korean Journal of Mathematics
    • /
    • 제28권1호
    • /
    • pp.89-104
    • /
    • 2020
  • In this paper, we connect (α, β) union soft sets and their ideal related properties with KU-algebras. In particular, we will study (α, β)-union soft sets, (α, β)-union soft ideals, (α, β)-union soft commutative ideals and ideal relations in KU-algebras. Finally, a characterization of ideals in KU-algebras in terms of (α, β)-union soft sets have been provided.

Class function table matrix of finite groups

  • Park, Won-Sun
    • 대한수학회지
    • /
    • 제32권4호
    • /
    • pp.689-695
    • /
    • 1995
  • Let G be a finite group with k distinct conjugacy classes $C_1, C_2, \cdots, C_k$ and F an algebraically closed field such that char$(F){\dag}\left$\mid$ G \right$\mid$$. We denoted by $Irr_F$(G) the set of all irreducible F-characters of G and $Cf_F$(G) the set of all class functions of G into F. Then $Cf_F$(G) is a commutative F-algebra with an F-basis $Irr_F(G) = {\chi_1, \chi_2, \cdots, \chi_k}$.

  • PDF

METHODS FOR ITERATIVE DISENTANGLING IN FEYNMAN’S OPERATIONAL CALCULI : THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

  • Ahn, Byung-Moo
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.931-938
    • /
    • 2010
  • The disentangling map from the commutative algebra to the noncommutative algebra of operators is the essential operation of Feynman's operational calculus for noncommuting operators. Thus formulas which simplify this operation are meaningful to the subject. In a recent paper the procedure for "methods for iterative disentangling" has been established in the setting of Feynman's operational calculus for time independent operators $A_1$, $\cdots$, $A_n$ and associated probability measures${\mu}_1$, $\cdots$, ${\mu}_n$. The main purpose for this paper is to extend the procedure for methods for iterative disentangling to time dependent operators.

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS

  • El Alaoui, Haitham;El Maalmi, Mourad;Mouanis, Hakima
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1177-1190
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.

MODULE DERIVATIONS ON COMMUTATIVE BANACH MODULES

  • Amini, Massoud;Bodaghi, Abasalt;Shojaee, Behrouz
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.891-906
    • /
    • 2020
  • In this paper, the commutative module amenable Banach algebras are characterized. The hereditary and permanence properties of module amenability and the relations between module amenability of a Banach algebra and its ideals are explored. Analogous to the classical case of amenability, it is shown that the projective tensor product and direct sum of module amenable Banach algebras are again module amenable. By an application of Ryll-Nardzewski fixed point theorem, it is shown that for an inverse semigroup S, every module derivation of 𝑙1(S) into a reflexive module is inner.

STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

  • Chen, Zhengxin;Zhao, Yu'e
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.973-981
    • /
    • 2021
  • Let R be a commutative ring with identity 1, n ≥ 3, and let 𝒯n(R) be the linear Lie algebra of all upper triangular n × n matrices over R. A linear map 𝜑 on 𝒯n(R) is called to be strong commutativity preserving if [𝜑(x), 𝜑(y)] = [x, y] for any x, y ∈ 𝒯n(R). We show that an invertible linear map 𝜑 preserves strong commutativity on 𝒯n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on 𝒯n(R).

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

α-COMPLETELY POSITIVE MAPS ON LOCALLY C*-ALGEBRAS, KREIN MODULES AND RADON-NIKODÝM THEOREM

  • Heo, Jaeseong;Ji, Un Cig;Kim, Young Yi
    • 대한수학회지
    • /
    • 제50권1호
    • /
    • pp.61-80
    • /
    • 2013
  • In this paper, we study ${\alpha}$-completely positive maps between locally $C^*$-algebras. As a generalization of a completely positive map, an ${\alpha}$-completely positive map produces a Krein space with indefinite metric, which is useful for the study of massless or gauge fields. We construct a KSGNS type representation associated to an ${\alpha}$-completely positive map of a locally $C^*$-algebra on a Krein locally $C^*$-module. Using this construction, we establish the Radon-Nikod$\acute{y}$m type theorem for ${\alpha}$-completely positive maps on locally $C^*$-algebras. As an application, we study an extremal problem in the partially ordered cone of ${\alpha}$-completely positive maps on a locally $C^*$-algebra.