• Title/Summary/Keyword: 1-D Simulation

Search Result 3,654, Processing Time 0.04 seconds

Comparison of Monitor Units Obtained from Measurements and ADAC Planning System for High Energy Electrons (측정과 ADAC 치료계획 시스템에서 계산된 고에너지 전자선의 Monitor Unit Value 비교)

  • Lee, Re-Na;Choi, Jin-Ho;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • The purpose of this study is to evaluate the monitor unit obtained from various methods for the treatment of superficial cancers using electron beams. Thirty-three breast cancer patients who were treated in our institution with 6, 9, and 12 MeV electron beams, were selected for this study. For each patient, irregularly shaped treatment blocks were drawn on simulation film and constructed. Using the irregular blocks, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and three-dimensional radiation treatment planning (3D RTP) system (PINNACLE 6.0, ADAC Laboratories, Milpitas CA) Measurements were made in solid water phantom with plane parallel (PP) chamber (Roos, OTW Germany) at 100 cm source-to surface distances. CT data was used to investigate the effect of heterogeneity. Monitor units were calculated by overriding CT values with 1 g/㎤ and in the presence of heterogeneity. The monitor unit values obtained by the above methods were compared. The dose, obtained from measurement in solid water phantom was higher than that of RTP values for irregularly shaped blocks. The maximum differences between monitor unit calculated in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. When CT data was used at a various gantry angle the agreement between the TPS data with and without density correction was within 3% for all energies. These results indicate that there are no significant difference in terms of monitor unit when density is corrected for the treatment of breast cancer patients with electrons.

  • PDF

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

Wavefront Compensation Using a Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics (적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상)

  • Ahn, Kyohoon;Rhee, Hyug-Gyo;Lee, Ho-Jae;Lee, Jun-Ho;Yang, Ho-Soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.106-113
    • /
    • 2016
  • In this paper, we deal with the wavefront compensation capability of a silicon carbide (SiC) deformable mirror (DM) with 37 actuators for adaptive optics. The wavefront compensation capability of the SiC DM is predicted by computer simulation and examined by actual experiments with a closed-loop adaptive optics system consistsing of a light source, a phase plate, a SiC DM, a high speed Shack-Hartmann sensor, and a control computer. Distortion of wavefront is caused by the phase plate in the closed-loop adaptive optics system. The distorted wavefront has a peak-to-valley (PV) wavefront error of $0.3{\mu}m{\sim}0.9{\mu}m$ and root-mean-square (RMS) error of $0.06{\mu}m{\sim}0.25{\mu}m$. The high-speed Shack-Hartmann sensor measures the wavefront error of the distortion caused by the phase plate, and the SiC DM compensates for the distorted wavefront. The compensated wavefront has residual errors lower than $0.1{\mu}m$ PV and $0.03{\mu}m$ RMS. Consequently, we conclude that we can compensate for the distorted wavefront using the SiC DM in the closed-loop adaptive optics system with an operating frequency speed of 500 Hz.

A New Mode Changable Asymmetric Full Bridge DC/DC Converter having 0 ~ 100 % Duty Ratio (0 ~ 100 % 시비율을 갖는 새로운 모드 가변형 비대칭 풀 브리지 DC/DC 컨버터)

  • Shin, Yong-Saeng;Roh, Chung-Wook;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • In this paper, a new mode changeable asymmetric full bridge dc/dc converter is proposed to solve the freewheeling current problem of the conventional zero voltage switching(ZVS) phase shift full bridge(PSFB) dc/dc converter of low output voltage and high output current applications. The proposed converter is operated as an asymmetric full bridge converter when the duty cycle is less than 50% and active clamp full bridge converter when the duty cycle is greater than 50%. As a result, since its freewheeling current is eliminated, the conduction loss is lower than that of the conventional ZVS PSFB dc/dc converter. Moreover, ZVS of all power switches can be ensured along a wide load ranges and output current ripple is very small. Therefore, high efficiency of the proposed converter can be achieved. Especially since its operation mode is changed to the active clamp full bridge converter during hold up time and can be operated with 50~100% duty ratio, it can produce the stable output voltage along wide input voltage range. The operational principles, theoretical analysis and design considerations are presented. To confirm the operation, validity and features of the proposed converter, experimental results from a 1.2kW($400V_{dc}/12V_{dc}$) prototype are presented.

Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

  • Guenot-Delahaie, Isabelle;Sercombe, Jerome;Helfer, Thomas;Goldbronn, Patrick;Federici, Eric;Jolu, Thomas Le;Parrot, Aurore;Delafoy, Christine;Bernaudat, Christian
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.268-279
    • /
    • 2018
  • The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs), power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs). As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on $PWR-UO_2$ fuel rods with advanced claddings such as M5(R) under "low pressure-low temperature" or "high pressure-high temperature" water coolant conditions. This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on $UO_2$-M5(R) fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE-starting from base irradiation conditions it itself computes-is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur. Areas of improvement are finally discussed with a view to simulating and analyzing further tests to be performed under prototypical PWR conditions within the CABRI International Program. M5(R) is a trademark or a registered trademark of AREVA NP in the USA or other countries.

Implementation of A Patient Card Integrating System Using by IC Card To Share A Medical Information (진료정보 공유를 위한 IC카드 기반 병원 진찰 카드 통합 시스템 구축)

  • Pack D.H.;Lee N.Y.;Kim Y.J.;Lee K.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.533-541
    • /
    • 2003
  • In the paper. the health card system to integrate several cards into one card for protecting patient's privacy and security problems is proposed. Firstly, it is defined the minimal data set for integrating several patient cards into one card using IC card, and developed the issuing system to issue the integrated patient IC card. In order to secure and certificate a patient's personal information. the integrated patient IC card has applied 3-DES and the PKI certificate authority based Windows 2000 is established. The receipt and reservation system for taking care of a healthcare has developed to cooperate with the existing hospital computer system. The integrating patient IC card system proposed in this paper is implemented to 11 hospitals and used for 1.000 patients. On the result of the simulation. the proposed system can receive or reserve for a patient to take care of healthcare in the simulated hospitals and also establish the basis of the mechanism to share a medical information.

Proposal of Early-Warning Criteria for Highway Debris Flow Using Rainfall Frequency (2): Criteria Adjustment and Verification (확률 강우량을 이용한 고속도로 토석류 조기경보기준 제안 (2) : 기준의 조정 및 적용성 검토)

  • Choi, Jaesoon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.15-24
    • /
    • 2019
  • In the previous study, the rainfall data of 1 hour, 6 hours and 3 days were used as the rainfall criterion according to the grade to trigger the debris flow in the highway area, using the rainfall data of Gangwon area and the rainfall time-series data at the spot where the debris flow occurred. In this study, we propose an early warning criterion of the highway debris flow triggering through appropriate combination of three rainfall criteria selected through previous studies and adjustments of rainfall criterion in the highway debris flow triggering. In addition, simulations were conducted using the time-series rainfall data of 2010~2012, which had a large amount of precipitation for the five sites where debris flows occurred in 2013. As a result of the study, the criteria for the early warning of highway unsteadiness on the highway were prepared. In case of the grade-based adjustment, it is preferable to apply the unified rating to the grade B. Also, if the fatigue of the monitoring is not a problem, adjusting it to A or S may be a way to positively cope with the occurrence of highway debris flow.

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures against Beach Erosion II - Centering on the Development of Physics-Based Morphology Model for the Estimation of an Erosion Rate of Nourished Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 II - 양빈 된 해빈 침식률 산정을 위한 물리기반 해빈 지형모형 개발을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-333
    • /
    • 2019
  • In this study, a physics-based 3D morphology model for the estimation of an erosion rate of nourished beach is newly proposed. As a hydrodynamic module, IHFOAM toolbox having its roots on the OpenFoam is used. On the other hand, the morphology model comprised a transport equation for suspended sediment, and Exner type equation derived from the viewpoint of sediment budget with the bed load being taken to accounted. In doing so, the incipient motion of sediment is determined based on the Shields Diagram, while the bottom suspended sediment concentration, the bed load transport rate is figured out using the bottom shearing stress directly calculated from the numerically simulated flow field rather than the conventional quadratic law and frictional coefficient. In order to verify the proposed morphology model, we numerically simulate the nonlinear shoaling, breaking over the uniform beach of 1/m slope, and its ensuing morphology change. Numerical results show that the partially skewed, and asymmetric bottom shearing stresses can be successfully simulated. It was shown that sediments suspended and eroded at the foreshore by wave breaking are gradually drifted toward a shore and accumulated in the process of up-rush, which eventually leads to the formation of swash bar. It is also worth mentioning that the breaker bar formed by the sediments dragged by the back-wash flow which commences at the pinnacle of up-rush as the back-wash flow gets weakened due to the increased depth was successfully duplicated in the numerical simulation.

A Study on Minimization of Harbor Oscillations by Infragravity Waves Using Permeable Breakwater (투과제를 이용한 중력외파의 항내 수면진동 저감 방법에 대한 연구)

  • Kwak, Moon Su;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.434-445
    • /
    • 2020
  • In this study, the minimization of harbor oscillation using permeable breakwater was applied to the actual harbor and investigated an effect of minimization by computer simulation in order to take into account the water quality problems and measures of harbor oscillation by infragravity waves at the same time. The study site is Mukho harbor located at East coast of Korea that harbor oscillation has been occurred frequently. The infragravity waves obtained by analyzing the observed field data for five years focused on the distribution between wave periods of 40 s and 70 s and wave heights in less than 0.1 m was 94% of analyzing data. The target wave periods was 68.0 s. The most effective method of minimization of harbor oscillation by infragravity waves was to install a detached permeable breakwater with transmission coefficient of 0.3 on the outside harbor and replace some area of the vertical wall in the harbor with wave energy dissipating structure to achieve a reflectivity of 0.9 or less. The amplitude reduction rate of this method shown in 27.4%. And the effect of the difference in transmission coefficient of permeable breakwater on the reduction rate of the amplitude was not significant.

Evaluation of the CNESTEN's TRIGA Mark II research reactor physical parameters with TRIPOLI-4® and MCNP

  • H. Ghninou;A. Gruel;A. Lyoussi;C. Reynard-Carette;C. El Younoussi;B. El Bakkari;Y. Boulaich
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4447-4464
    • /
    • 2023
  • This paper focuses on the development of a new computational model of the CNESTEN's TRIGA Mark II research reactor using the 3D continuous energy Monte-Carlo code TRIPOLI-4 (T4). This new model was developed to assess neutronic simulations and determine quantities of interest such as kinetic parameters of the reactor, control rods worth, power peaking factors and neutron flux distributions. This model is also a key tool used to accurately design new experiments in the TRIGA reactor, to analyze these experiments and to carry out sensitivity and uncertainty studies. The geometry and materials data, as part of the MCNP reference model, were used to build the T4 model. In this regard, the differences between the two models are mainly due to mathematical approaches of both codes. Indeed, the study presented in this article is divided into two parts: the first part deals with the development and the validation of the T4 model. The results obtained with the T4 model were compared to the existing MCNP reference model and to the experimental results from the Final Safety Analysis Report (FSAR). Different core configurations were investigated via simulations to test the computational model reliability in predicting the physical parameters of the reactor. As a fairly good agreement among the results was deduced, it seems reasonable to assume that the T4 model can accurately reproduce the MCNP calculated values. The second part of this study is devoted to the sensitivity and uncertainty (S/U) studies that were carried out to quantify the nuclear data uncertainty in the multiplication factor keff. For that purpose, the T4 model was used to calculate the sensitivity profiles of the keff to the nuclear data. The integrated-sensitivities were compared to the results obtained from the previous works that were carried out with MCNP and SCALE-6.2 simulation tools and differences of less than 5% were obtained for most of these quantities except for the C-graphite sensitivities. Moreover, the nuclear data uncertainties in the keff were derived using the COMAC-V2.1 covariance matrices library and the calculated sensitivities. The results have shown that the total nuclear data uncertainty in the keff is around 585 pcm using the COMAC-V2.1. This study also demonstrates that the contribution of zirconium isotopes to the nuclear data uncertainty in the keff is not negligible and should be taken into account when performing S/U analysis.