DOI QR코드

DOI QR Code

Proposal of Early-Warning Criteria for Highway Debris Flow Using Rainfall Frequency (2): Criteria Adjustment and Verification

확률 강우량을 이용한 고속도로 토석류 조기경보기준 제안 (2) : 기준의 조정 및 적용성 검토

  • Choi, Jaesoon (Department of Civil and Architectural Engineering, Seokyeong University)
  • 최재순 (서경대학교 토목건축공학과)
  • Received : 2019.05.23
  • Accepted : 2019.06.21
  • Published : 2019.06.30

Abstract

In the previous study, the rainfall data of 1 hour, 6 hours and 3 days were used as the rainfall criterion according to the grade to trigger the debris flow in the highway area, using the rainfall data of Gangwon area and the rainfall time-series data at the spot where the debris flow occurred. In this study, we propose an early warning criterion of the highway debris flow triggering through appropriate combination of three rainfall criteria selected through previous studies and adjustments of rainfall criterion in the highway debris flow triggering. In addition, simulations were conducted using the time-series rainfall data of 2010~2012, which had a large amount of precipitation for the five sites where debris flows occurred in 2013. As a result of the study, the criteria for the early warning of highway unsteadiness on the highway were prepared. In case of the grade-based adjustment, it is preferable to apply the unified rating to the grade B. Also, if the fatigue of the monitoring is not a problem, adjusting it to A or S may be a way to positively cope with the occurrence of highway debris flow.

선행연구에서는 강원지역을 대상으로 실제 고속도로 토석류가 발생한 지점의 시계열 강우정보와 강원지역의 강우정보를 이용하여 1시간, 6시간, 3일 확률 강우량을 고속도로 토석류 평가등급에 따라 강우기준으로 사용하는 연구를 수행하였다. 이 연구에서는 선행연구를 통해서 선정된 3가지 강우기준의 적절한 조합과 토석류 평가등급에 따른 강우기준 조정을 통해 실제 고속도로 토석류 조기경보 기준을 제안하였다. 또한, 2013년 토석류가 발생한 5개 지점에 대해서는 강수량이 많았던 2010~2012년 시계열 강우자료를 이용하여 모의평가를 수행하였다. 연구결과, 적절한 조합의 고속도로 토석류 조기경보를 위한 기준이 마련되었으며 등급별 기준조정의 경우에는 토석류 평가등급 C, D, E의 경우는 현실적인 점을 고려하여 B등급의 값으로 통일하여 적용하는 것이 바람직할 것으로 판단된다. 또한, 모니터링의 피로도가 문제가 되지 않는다면, 그 이상인 A 또는 S로 조정하는 것도 고속도로 토석류 발생에 대해 적극적으로 대처하는 방법이 될 수 있다고 판단된다.

Keywords

HKBJBA_2019_v12n2_15_f0001.png 이미지

Fig. 1. Simulation spreadsheet for early warning alarm on the debris flow

HKBJBA_2019_v12n2_15_f0002.png 이미지

Fig. 2. Monthly rainfall statistics in Daekwanryung (2010-2013) (http://data.kma.go.kr)

HKBJBA_2019_v12n2_15_f0003.png 이미지

Fig. 3. Assessment points for debris flow and rainfall sites in simulation of Yongdong line

Table 1. Rainfall criterion for early warning of highway debris flow

HKBJBA_2019_v12n2_15_t0001.png 이미지

Table 2. Final result of assessment for debris flow triggering in the previous study

HKBJBA_2019_v12n2_15_t0002.png 이미지

Table 3. Early Danger for rainfall simulation evaluation criteria set CASE

HKBJBA_2019_v12n2_15_t0003.png 이미지

Table 4. Results of early warning alarm from the 30 days simulation using AWS rainfall data

HKBJBA_2019_v12n2_15_t0004.png 이미지

Table 5. Simulation result according to the adjustment of rainfall criteria

HKBJBA_2019_v12n2_15_t0005.png 이미지

Table 6. Maximum rainfall of debris-flow nonoccurrence year (http://data.kma.go.kr)

HKBJBA_2019_v12n2_15_t0006.png 이미지

Table 7. Simulation evaluation about debris-flow nonoccurrence year maximum rainfall

HKBJBA_2019_v12n2_15_t0007.png 이미지

Table 8. Rainfall data in early warning simulation of debris flow triggering in Yongdong highway line

HKBJBA_2019_v12n2_15_t0008.png 이미지

Table 9. Simulation result of Yongdong line

HKBJBA_2019_v12n2_15_t0009.png 이미지

References

  1. Caine, N. (1980). The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler. Series A, Physical Geography. 62(1/2): 23-27.
  2. Hong, W. P., Kim, S. K., Han, J. G. (1990). Prediction of Rainfall-triggered Landslides in Korea. Journal of the Korean Geo-Environmental Society. 6(2): 55-63. (in Korean)
  3. JMA (Japanese Meteorological Agency). www.jma.go.jp, Ministry of Land, Infrastructure, Trnasport and Tourism.
  4. Kim, K. S. (2009). Development of Debris Flow Hazard Analysis Method and Its Application. Expressway & Transportation Research Institute Research Report. (in Korean)
  5. KIGAM (2003). Landslide Prediction and Prevention Technology Research. Korea Institute of Geoscience and Mineral Resources. (in Korean)
  6. KIGAM, https://data.kma.go.kr. Weather Data Release Portal.
  7. KIGAM, www.weather.go.kr, AWS (automatic weather system).
  8. Korea Forest Service, Landslide Information Systems. (http://sansatai.forest.go.kr)
  9. Ministry of land, Infrastructure and Transport, Korea Precipitation Frequency Data Server. (http://www.k-idf.re.kr)
  10. Park, J. Y., Lee, S. R., Lee, D. H., Kim, Y. T., Oh, S. B., and Park, H. J. (2018). Development of Continuous Rainfall-Based Citywide Landslide Early Warning Model. Journal of Korean Society Hazard Mitigation. 18(1): 99-111. (in Korean) https://doi.org/10.9798/KOSHAM.2018.18.1.99