• Title/Summary/Keyword: 1,1,1-TCE

Search Result 225, Processing Time 0.026 seconds

Physical Properties and Cleaning Ability of Fluoride-Type Cleaning Agents Alternative to Ozone Destruction Substances (오존파괴물질 대체 불소계 세정제의 물성 및 세정성 평가연구)

  • Park, Ji Na;Kim, Eun Jung;Jung, Young Woo;Kim, Honggon;Bae, Jae Heum
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2005
  • Fluoride-type cleaning agents such as TFEA (2,2,2-trifluoroethanol) and HFE (hydrofluoroether) are noticed to be next generation cleaning agents alternative to CFCs since they do not destruct ozones in the stratosphere due to no containment of chloride in the molecule, have lower global warming potential compared to HFCs and HCFCs, and are thermally stable compounds. Thus, the physical properties and cleaning agents were measured and compared with those of CFC-113, 1,1,1-TCE and HCFC-141b which are ozone destruction substances. They were also compared and evaluated with those of IPA and methanol which are currently employing as alternative cleaning agents. And TFEA-based cleaning agents consisted of TFEA and alcohols or HFEs were formulated, their physical properties and cleaning abilities were measured and their utilization as alternative cleaning agents was evaluated. As a result, TFEA and HFEs have lower cleaning ability for their removal of various soils compared to chloride-type cleaning agents, but theyshow excellent cleaning ability for Fluoride-type soils. And it is observed that the formulated cleaning agents of TFEA and alcohols or HFEs caused to increase cleaning ability of flux and unsoluble cutting oil more than 100% compared to their individual component. Therefore, the fluoride-type cleaning agents are expected to be utilized for development of environmental-friendly non aqueous cleaning agents with excellent cleaning ability if they are formulated with proper solvents or additives.

  • PDF

Characteristics of Groundwater Quality in Sasang Industrial Area, Busan Metropolitan City (부산시 사상공단지역의 지하수 수질 특성)

  • Hamm, Se-Yeong;Kim, Kwang-Sung;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Sung, Ig-Hwan;Jang, Seong
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.753-770
    • /
    • 2006
  • In urban areas, groundwater pollution is heavily affected by urbanization with land use types. This study aims to characterize groundwater quality and contamination in Sasang industrial area of Busan Metropolitan City where metalworking, machinery and footwear factories are located. Busan Metropolitan City is the highest in the utilization of groundwater resources among the metropolitan cities in Korea. $K^+,\;Na^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-}\;and\;HCO_3^-$ concentrations, and electrical conductivity (EC), total dissolved solids (TDS) and salinity are high in the areas near the Nakdong River. The results are attributed to the influence of salt water which intruded into the coastal sediments during sedimentation. In addition, the dominant chemical type of Ca-Cl indicates the influence of salt water in the geological formations as well as anthropogenic pollution. $SiO_2$ ion is interpreted to originate from both water-silicate mineral reactions and the decomposition of cement concretes. Trichloroethylene (TCE) was detected at 12 sites of total 18 sites. However, tetrachloroethylene (PCE) was detected at f sites and 1.1.1-trichloroethane (TCA) at 3 sites. According to the factor analysis, factor 1 was explained by 49.8%, factor 2 19.8%, and factor 3 11.0% with total 80.6% explanation. pH, TDS, salinity, $Ca^{2+},\;K^+,\;Mg^{2+},\;Na^+,\;Al^{3+},\;As^{3+},\;Cl^-\;and\;Fe^{2+}$ were positively highly loaded to factor 1. The chemical components loaded to factor 1 represent the chemical characteristics of both industrial pollution and influence by salt water. Based on the cluster analysis and distribution pattern of chemical components, the concentration of $Na^+,\;Ca^{2+},\;Cl^-,\;SO_4^{2-}\;K^+,\;and\;Mg^{2+}$ is high in the riverside area of the Nakdong River composed of coastal sediments that is influenced by salt water. The downstream area of the Hakjang Stream is judged to be affected by both salt water and artificial pollution. The other part of the study area is interpreted by anthropogenic pollution.

Silicone oil에 기초한 microemulsion을 이용한 DNAPL의 제거

  • 권태순;백기태;이재영;양중석;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.479-482
    • /
    • 2003
  • In this study, the solubilization of dense nonaqueous phase liquid (DNAPL) using oil-based emulsion was investigated for aquifer remediation. The micro-sized oil emulsion has large surface areas and buoyancy force, therefore it can be effective in treating DNAPL pool of the aquifer without downward migration of DNAPLs. The emulsion was prepared using silicone oil and mechanical homogenization. And the prepared emulsion had micro-sized similar distribution: 99 % in number and 80 % in volume were less than 10${\mu}{\textrm}{m}$. As target pollutants, trichloroethylene and 1, 2 dichlorobenzene were selected. All of used DNAPLs were solubilized successfully in oil-based emulsion. Even at low oil percentage, emulsion showed good solubility against pollutants. Therefore, the remediation using oil-based emulsion was considered as an effective alternative in dealing with DNAPLs of the aquifer.

  • PDF

Evaluation of Transformation Capacity for Degradation of Ethylene Chlorides by Methylosinus trichosporium OB3b

  • Lee, Eun-Yeol;Kang, Jung-Mee;Park, Sung-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.309-312
    • /
    • 2003
  • The transformation capacity (T$\_$c/) of Methylosinus trichosporium OB3b in the degradation of ethylene chlorides was determined by measuring the decrease of soluble methane monooxygenase (sMMO) activity of resting cells in batch experiments. All measurements of sMMO activity were taken in the presence of 20 mM formate to avoid the deficiency of reducing power, and within 2 hrs to avoid the effect of natural inactivation from instability of the resting cells. The constant T$\_$c/ values of 0.58 ${\pm}$ 0.132 and 0.80 ${\pm}$ 0.17 ${\mu}$mol/mg cell were obtained for trichloroethylene (TCE) and 1,2-dichloroethylene (cis and trans-1,2-DCE), respectively, regardless of their concentrations. The transformation capacity measured by this method can be used to predict the amount of cells that should be stimulated in in-situ bioremediation.

Column Removal of Trichloroethylene and Dichloromethane using Low Cost Activated Carbon

  • Radhika, M.;Lee, Young-Seak;Palanivelu, K.
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • Coconut shell activated carbon (CSAC) was investigated for its ability in the removal of two neutral chlorinated organic compounds, namely trichloroethylene (TCE) and dichloromethane (DCM) from aqueous solution using a packed bed column. The efficiency of the prepared activated carbon was also compared with a commercial activated carbon (CAC). The important design parameters such as flow rate and bed height were studied. In all the cases the lowest flow rate (5 mL/min) and the highest bed height (25 cm) resulted in maximum uptake and per cent removal. The experimental data were analysed using bed depth service time model (BDST) and Thomas model. The regeneration experiments including about five adsorption-desorption cycles were conducted. The suitable elutant selected from batch regeneration experiments (25% isopropyl alcohol) was used to desorb the loaded activated carbon in each cycle.

TCE Exposure Assessment of Cleaning Workers (세척공정의 트리클로로에틸렌 TWA 및 STEL 평가 사례)

  • Hyun Soo Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.3-5
    • /
    • 2023
  • Objective: This study introduces exposure concentrations of time-weighted average standard (TWA) evaluation and short-time exposure standard (STEL) evaluation for trichloroethylene in the cleaning process. Methods: Trichloroethylene measurement was conducted according to the KOSHA Guide (A-24-2019) method. It was carried out twice. Results: As a result of the first measurement, TWA concentration exceeded 4 times the exposure standard and STEL concentration exceeded 16 times, but the inaccuracy and breakthrough of the collection time could not be considered, so the second measurement was conducted. The second measurement result was lower than the first measurement result, but exceeded the exposure standards (TWA, STEL). Conclusions: We were able to confirm that the exposure level of workers in the cleaning process using trichloroethylene exceeded the exposure standard. And it is also considered necessary to grasp the approximate concentration using a detector tube in the preliminary survey.

Generating Characteristics of VOCs in a Commercial Laundry Shop and the Effects on the Health of Workers (소규모 세탁소의 휘발성유기화합물 발생 특성과 종사자의 건강에 미치는 영향)

  • Park, Ok-Hyun;Lee, Kyoung-Seok;Min, Kyoung-Woo;Cho, Gwang-woon;Yoon, Kwan-Ju;Jeong, Won-Sam;Cho, Young-Gwan;Kim, Eun-Sun;Yang, Jin-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the generating characteristics of VOCs and the exposure effect to chemicals among laundry workers and to identify the current status of occupational safety and health through health check-ups. Methods: During the six-month period from April to September 2015, this study quantitatively measured seven VOCs in ten laundries and carried out health examinations on 35 workers. Results: Comparing the monitoring results for the ten laundries, they were classified into three groups by ventilation system, dry-cleaning and size of shop. The average concentration of toluene, chlorobenzene, xylene, ethylbenzene, benzene, styrene and TCE were 23.9, 15.6, 5.5, 2.8, 0.9, 0.3 and $1.3{\mu}g/m^3$, respectively. During dry-cleaning, VOC concentrations were 1.3-8.9 times higher than usual. On the other hand, at night the concentrations of toluene, chlorobenzene, xylene, ethylbenzene, benzene, styrene and TCE were 64.3, 41.5, 12.2, 6.3, 1.1, 1.2 and $6.6{\mu}g/m^3$, respectively. The health checkup results for the 35 workers showed that 13 workers were diagnosed as normal, while 22 workers were diagnosed as requiring continuous monitoring or re-checkup of liver and hematogenous functions. Conclusions: Although the results of exposure evaluation to VOCs did not exceed reference value and items had a low correlation with health checkup items, it is necessary to improve indoor air quality due to VOC volatilization from clothes.

Performance of Institute of Occupational Health, Korean Industrial Health Association in Proficiency Analytical Testing Program (대한산업보건협회 산업보건연구소의 PAT 정도관리 참여결과)

  • Lee, Jun-Seong;Yoo, Ho-Kyum;Oh, Mi-Soon;Park, Wha-Me;Yun, Gi-Sang;Choi, Ho-Chun;Chung, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.313-321
    • /
    • 1996
  • Our laboratoy has been participated in Proficiency Analytical Testing (PAT) program which is operated by the Americal Industrial Hygiene Association in cooperation with the National Institute for Occupational Safety and Health (NIOSH). The program is designed to assist a laboratory improve its analytical performance by providing samples on a quarterly basis, evaluating the results, and providing reports on how well the laboratory performed. Evaluation of the results reported here covers five rounds of the PAT program (round 121~round 125). The way a laboratory is evaluated by PAT program is as follows: 1) There is no overall proficiency rating given to a laboratory. 2) A proficiency rating is given for each type of analyze (i.e., metals, silica, asbestos, solvents) that a laboratory analyzed. 3) Proficiency is rated acceptable ("A") if Z score lies between -3 and +3, and unacceptable if Z score is either higher than +3 ("H") or lower than -3 ("Lo"). Z score = (reported data - reference value) / standard deviation 4) For a laboratory to be rated proficient it must either have had no outliers over the most recent two rounds or of the samples actually analyzed over the past year (past four rounds), 75 % or more of the analyze sample results must be acceptable. According to the above rating criteria of PAT program, performance of metals including cadmium, lead, chromium and zinc, and asbestos sample analyses were rated acceptable ("A"). For silica analyses, all samples except one out of four samples in round 122 was rated high("H") were acceptable showing 95 % of ing 95 % of acceptance rate (19/20) throughout the rounds. Analyses of organic solvents were done on 52 samples in 9 types including methanol(MOH), 1,1,1-trichloroethane(MCM), tetrachloroethylene(PCE), trichloroethylene(TCE), benzene(BNZ), o-xylene(OXY), toluene(TOL), chloroform(CFM), 1,2-dichloroethane(DCE). All samples analyzed were rated acceptable except 2 samples that were rated high; one out of each four MCM and TCE samples in round 121, and one that was low out of four o-xylene analyses in round 122 indicating 94 % of acceptance rate(49/52) throughout the rounds. According to the laboratory rating criteria, our laboratory is rated proficient so far for all types of contaminants.

  • PDF

Measurement of the Quantity of Hydrogen Peroxide Produced in the Ultrasound-irradiated Aqueous Solution of Organic Compounds (초음파를 조사(照射)한 유기화합물 수용액 속에서의 과산화수소 생성량의 측정)

  • Mo, Se-Young;Chang, Hong-Ki;Lee, Kyung-Jae;Jang, Gun-Eik;Sohn, Jong-Ryeul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.61-71
    • /
    • 2000
  • When irradiate the power ultrasound into the aqueous solutions, water vapor is decomposed by the heat of very high temperature in the cavitation bubble to produce OH (hydroxyl radical) and H (hydrogen radical), and these radicals play a role in decomposing the substances in aqueous solution by oxidation and/or reduction, and in producing the hydrogen peroxide. Accordingly it is possible to predict that the quantity of hydrogen peroxide produced may correlate with the sonolysis mechanism of the substance in aqueous solution. Thus to confirm this prediction, the quantities of hydrogen peroxide produced from each of the air saturated distilled water and three aqueous solutions of TCE, benzene, and 2,4-DCP that are prepared by dissolving them into distilled water are measured. As a result, it showed that the quantity of hydrogen peroxide produced from the distilled water and three aqueous solutions are increased in order of distilled water>TCE solution>2,4-DCP solution>benzene solution, and decrease with decrease in concentration of organic substance, which coincide with the sonolysis mechanisms reported that TCE in aqueous solution is decomposed directly by the pyrolysis in and around the cavitation bubbles when its concentration is high and by the radical reaction when low, however, benzene and 2,4-DCP are decomposed not only by the pyrolysis but also by the radical reactions. Effects of such experimental parameters as the acoustic frequency and power and as the concentration showed that the higher the acoustic frequency and the lower the acoustic power, the less the quantity of hydrogen peroxide was produced. This result coincide with the theory of ultrasound for the relation between the cavitation that is the energy source of the power ultrasound in aqueous solution and these experimental parameters.

  • PDF

Characteristics of PCE Reductive Dechlorination using Benzoate as an Electron Donor (벤조산염을 전자공여체로 이용한 PCE의 환원성 탈염소화 특성)

  • Lee, Il-Su;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.292-299
    • /
    • 2006
  • Batch experiments were performed to evaluate the effects of the electron donor dosage and the initial biomass on the reductive dechlorination of perchloroethene(PCE) with benzoate as an electron donor. When benzoate was added less than the theoretical requirement for dechlorination(electron donor/acceptor ratio=0.5 and 1), the dechlorination efficiency increased from 71% to 94.3% with the increase in benzoate dosage, but the fraction of electron equivalent utilized for dechlorination decreased from 92.7% to 79.6%. Methane production was observed when the hydrogen concentration was higher than the threshold value(10 nM) after PCE and trichloroethene (TCE) were reduced to cis-1,2-dichloroethene(cDCE). When benzoate was added more than the theoretical requirement, the residual hydrogen converted into methane after the completion of dechlorination. The increase in the seeding biomass shortened the lag time for dechlorination, but it did not affect the maximum dechlorination rate as it was mainly governed by the benzoate fermentation rate. When the seeding biomass concentration was high, active dechlorination during the early period increased dechlorination efficiency while decreasing methane production.