DOI QR코드

DOI QR Code

Column Removal of Trichloroethylene and Dichloromethane using Low Cost Activated Carbon

  • Radhika, M. (Centre for Environmental studies, Anna University Chennai) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Palanivelu, K. (Centre for Environmental studies, Anna University Chennai)
  • Received : 2010.01.25
  • Accepted : 2010.02.18
  • Published : 2010.03.30

Abstract

Coconut shell activated carbon (CSAC) was investigated for its ability in the removal of two neutral chlorinated organic compounds, namely trichloroethylene (TCE) and dichloromethane (DCM) from aqueous solution using a packed bed column. The efficiency of the prepared activated carbon was also compared with a commercial activated carbon (CAC). The important design parameters such as flow rate and bed height were studied. In all the cases the lowest flow rate (5 mL/min) and the highest bed height (25 cm) resulted in maximum uptake and per cent removal. The experimental data were analysed using bed depth service time model (BDST) and Thomas model. The regeneration experiments including about five adsorption-desorption cycles were conducted. The suitable elutant selected from batch regeneration experiments (25% isopropyl alcohol) was used to desorb the loaded activated carbon in each cycle.

Keywords

References

  1. US EPA fact sheets. 2006, http://nlquery.epa.gov/epasearch/epasearch.
  2. Kim, J. O. Water air soil poll. 1998, 108, 189. https://doi.org/10.1023/A:1005068223061
  3. Gehringer, P.; Otherset, P. Water Res. 1998, 22, 645.
  4. Cooper, W. J.; Meacham, D. E.; Nickelsen, M. G.; Lin, K.; Ford, D. B.; Kurucz, C. N.; Waite, T. D. J. Air Waste Manage. 1993, 43, 1358. https://doi.org/10.1080/1073161X.1993.10467210
  5. Cooper, W. J.; Cadavid, E.; Nickelsen, M. G.; Lin, K.; Kurucz, C. N.; Waite, T. D. J. Air Waste Manage. 1993, 85, 106.
  6. Diks, R. M. M.; Ottengraf, S. P. P. Bioproc. Biosyst. Eng. 1991, 6, 131. https://doi.org/10.1007/BF00369249
  7. Zytner, R. G. Water air soil poll. 1992, 65, 245. https://doi.org/10.1007/BF00479890
  8. Kurimoto, Y.; Doi, S.; Aoyama, M. J. Wood Sci. 2006, 47, 76.
  9. "National Organic Standards Board Technical Advisory Panel Review Compiled by OMRI for the USDA National Organic Program;"Activated Carbon", Last Updated August 14, 2002.
  10. Eckenfelder, W. W. "Industrial Water Pollution Control", McGraw Hill Publication, USA, 1989, 273.
  11. Radhika, M.; Palanivelu, K. J. Hazard. Mater. 2006, 138, 116. https://doi.org/10.1016/j.jhazmat.2006.05.045
  12. Aksu, Z.; Gonen, F. Proc. Biochem. 2003, 39, 599.
  13. Volesky, B.; Park, J. M. Water Res. 2003, 37, 297. https://doi.org/10.1016/S0043-1354(02)00282-8
  14. Bohart, G.; Adams, S. J Am. Chem. Soc. 1920, 42, 523. https://doi.org/10.1021/ja01448a018
  15. Muraleedharan, D. R.; Philip, L.; Iyenger, L. Bioresource Technol. 1994, 49, 179. https://doi.org/10.1016/0960-8524(94)90082-5
  16. Hutchins, R. A. Chemical Engin. 1973, 80, 133.
  17. Yan, G.; Viraraghaan, T.; Chen, M. Adsorpt. Sci. Technol. 2001, 19, 25. https://doi.org/10.1260/0263617011493953
  18. Goel, J.; Kadirvelu, K.; Chitra, R.; Kumar, G. V. J. Hazard. Mater. 2005, 125, 211. https://doi.org/10.1016/j.jhazmat.2005.05.032
  19. Gonzalo, Ramona, A.; Sonia F.; Julia, G.; Gervasio, A.; Aksu, Z.; Gonen, F. J. Hazard. Mater. 2006, 133, 61. https://doi.org/10.1016/j.jhazmat.2004.12.041
  20. Ko, D. C. K.; Porter, J. F.; Mckay, G. Chem. Eng. Sci. 2002, 55, 5819.
  21. Zhoa, M. J.; Dunean, R.; Hille, R. P. V. Water Res. 1999, 33, 1516. https://doi.org/10.1016/S0043-1354(98)00338-8