• Title/Summary/Keyword: 0-dB Compensation

Search Result 168, Processing Time 0.029 seconds

Design of CMOS Multifunction ICs for X-band Phased Array Systems (CMOS 공정 기반의 X-대역 위상 배열 시스템용 다기능 집적 회로 설계)

  • Ku, Bon-Hyun;Hong, Song-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.6-13
    • /
    • 2009
  • For X-band phased array systems, a power amplifier, a 6-bit phase shifter, a 6-bit digital attenuator, and a SPDT transmit/receive (T/R) switch are fabricated and measured. All circuits are demonstrated by using CMOS 0.18 um technology. The power amplifier has 2-stage differential and cascade structures. It provides 1-dB gain-compressed output power ($P_{1dB}$) of 20 dBm and power-added-efficiency (PAE) of 19 % at 8-11 GHz frequencies. The 6-bit phase shifter utilizes embedded switched filter structure which consists of nMOS transistors as a switch and meandered microstrip lines for desired inductances. It has $360^{\circ}$ phase-control range and $5.6^{\circ}$ phase resolution. At 8-11 GHz frequencies, it has RMS phase and amplitude errors are below $5^{\circ}$ and 0.8 dB, and insertion loss of $-15.7\;{\pm}\;1,1\;dB$. The 6-bit digital attenuator is comprised of embedded switched Pi-and T-type attenuators resistive networks and nMOS switches and employes compensation circuits for low insertion phase variation. It has max. attenuation of 31.5 dB and 0.5 dB amplitude resolution. Its RMS amplitude and phase errors are below 0.4 dB and $2^{\circ}$ at 8-11 GHz frequencies, and insertion loss is $-10.5\;{\pm}\;0.8\;dB$. The SPDT T/R switch has series and shunt transistor pairs on transmit and receive path, and only one inductance to reduce chip area. It shows insertion loss of -1.5 dB, return loss below -15 dB, and isolation about -30 dB. The fabricated chip areas are $1.28\;mm^2$, $1.9mm^2$, $0.34\;mm^2$, $0.02mm^2$, respectively.

A Highly Linear CMOS Baseband Chain for Wideband Wireless Applications

  • Yoo, Seoung-Jae;Ismail, Mohammed
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.486-492
    • /
    • 2004
  • The emergence of wide channel bandwidth wireless standards requires the use of a highly linear, wideband integrated CMOS baseband chain with moderate power consumption. In this paper, we present the design of highly linear, wideband active RC filters and a digitally programmable variable gain amplifier. To achieve a high unity gain bandwidth product with moderate power consumption, the feed-forward compensation technique is applied for the design of wideband active RC filters. Measured results from a $0.5{\mu}m$ CMOS prototype baseband chain show a cutoff frequency of 10 MHz, a variable gain range of 33 dB, an in-band IIP3 of 13 dBV, and an input referred noise of 114 ${\mu}Vrms$ while dissipating 20 mW from a 3 V supply.

  • PDF

A Virtual Array Design of 77 GHz Vehicle Radar for Detecting Moving Targets (이동표적 탐지를 위한 77 GHz 차량레이더용 가상배열 설계)

  • Kim, Doo-Soo;Hong, Dong-Hee;Joo, Jeong-Myeong;Yang, Jin-Mo;Lee, Sang-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.435-444
    • /
    • 2015
  • This paper specifies on a virtual array design of a 77 GHz vehicle radar for detecting a moving target at a time division transmit and a near range. The virtual array designed reduces a hardware complexity, weight and price. However, a synthesized beam of the virtual array has a high side lobe by a phase distortion of receive signals when the moving target is detected at the time division transmit. For this, a subarray receive signal with a same phase is used and the side lobe of the synthesized beam is suppressed above at least 10 dB. Also the virtual array has a beam distortion by a spherical wave when the vehicle radar operates at near range. So a boresight receive signal of each target range is compensated at each receive signal. Therefore the synthesized beam with compensation recovers a normal main lobe and improves the side lobe about 10~15 dB.

Design of a Linear CMOS OTA with Mobility Compensation and Common-Mode Control Schemes (이동도 보상 회로와 공통모드 전압 조절기법을 이용한 선형 CMOS OTA)

  • Kim, Doo-Hwan;Yang, Sung-Hyun;Kim, Ki-Sun;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.81-88
    • /
    • 2006
  • This paper describes a new linear operational transconductance amplifier (OTA). To improve the linearity of the OTA, we employ a mobility compensation circuit that combines the transistor paths operating at the triode and subthreshold regions. The common-mode control schemes consist of a common-mode feedback (CMFB) and common-mode feedforward (CMFF). The circuit enhances linearity of the transconductance (Gm) under the wide input voltage swing range. The proposed OTA shows ${\pm}1%$ Gm variation and the total harmonic distortion (THD) of below -73dB under the input voltage swing range of ${\pm}1.1V$. The OTA is implemented using a $0.35{\mu}m$ n-well CMOS process under 3.3V supply.

Distributed Multi-view Video Coding Based on Illumination Compensation (조명보상 기반 분산 다시점 비디오 코딩)

  • Park, Sea-Nae;Sim, Dong-Gyu;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.17-26
    • /
    • 2008
  • In this paper, we propose a distributed multi-view video coding method employing illumination compensation for multi-view video coding. Distributed multi-view video coding (DMVC) methods can be classified either into a temporal or an inter-view interpolation-based ones according to ways to generate side information. DMVC with inter-view interpolation utilizes characteristics of multi-view videos to improve coding efficiency of the DMVC by using side information based on the inter-view interpolation. However, mismatch of camera parameters and illumination change between two views could bring about inaccurate side information generation. In this paper, a modified distributed multi-view coding method is presented by applying illumination compensation in generating the side information. In the proposed encoder system, in addition to parity bits for AC coefficients, DC coefficients are transmitted as well to the decoder side. By doing so, the decoder can generate more accurate side information by compensating illumination changes with the transmitted DC coefficients. We found that the proposed algorithm is $0.1{\sim}0.2\;dB$ better than the conventional algorithm that does not make use of illumination compensation.

Design of 4-Bit TDL(True-Time Delay Line) for Elimination of Beam-Squint in Wide Band Phased-Array Antenna (광대역 위상 배열 안테나의 빔 편이(Beam-Squint) 현상 제거를 위한 4-Bit 시간 지연기 설계)

  • Kim, Sang-Keun;Chong, Min-Kil;Kim, Su-Bum;Na, Hyung-Gi;Kim, Se-Young;Sung, Jin-Bong;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1061-1070
    • /
    • 2009
  • In this paper, we have designed TDL(True-time Delay Line) for eliminating beam-squint occurring in active phased array antenna with large electrical size operated in wide bandwidth, and have tested its electrical performance. The proposed TDL device is composed of 4-bit microstrip delay line structure and MMIC amplifier for compensation of the delay-line loss. The measured results of gain and phase versus delay state satisfy the electrical requirements, also P1dB output power and noise figure meet the requirement. To verify the performance of fabricated TDL, we have simulated the beam patterns of wide-band active phased array antenna using the measured results and have certified the beam pattern compensation performance. As a result of simulated beam pattern compensation with respect to the 675.8 mm size antenna which is operated in X-band, 800 MHz bandwidth, we have reduced the beam squint error of ${\pm}1^{\circ}$ with ${\pm}0.1^{\circ}$. So this TDL module is able to be applied to active phase array antenna system.

Design of an $tan^{-1}$ circuit for the carrier frequency offset compensation of IEEE 802.11a PHY (IEEE 802.11a PHY의 반송과 주파수 옵셋 보정을 위한 $tan^{-1}$ 회로 설계)

  • Kim, Su-Young;Lim, Choon-Sik;Cho, Kyoung-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4A
    • /
    • pp.247-255
    • /
    • 2003
  • In this paper, an $tan^{-1}$ circuit for the frequency synchronization of OFDM based IEEE 802.11a is presented. The proposed circuit consists of a divider, an $tan^{-1}$ ROM and a phase detector, which can detect frequency offset within 0.0491 rad. The circuit implemented with FPGA shows a pull-in range of under ${\pm}625KHz$ at 5dB AWGN. It may be useful for IEEE 802.11a WLAN standard.

Doherty Amplifier Using Load Modulation and Phase Compensation DGS Micro-Strip Line (부하 변조 및 위상 보상 DGS 마이크로스트립 선로를 이용한 도허티 증폭기)

  • Choi Heung-Jae;Lim Jong-Sik;Jeong Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.815-824
    • /
    • 2005
  • In this paper, we proposed a new DGS(Defected Ground Structure) Doherty amplifier for IMT-2000 band. Originally, active load-pull analysis of a Doherty amplifier assumes ideal harmonic termination condition. However, there have been no papers considering this ideal harmonic termination condition. We obtained excellent improvements of efficiency, gain, maximum output power as well as superior size reduction of a Doherly amplifier by satisfying the overlooked assumption of ideal harmonic termination through the adaptation of DGS at the output transmission line of carrier and peaking amplifier that is essential for Doherty operation. The amount of both the 2nd and the 3rd harmonic rejection of the proposed DGS Doherty amplifier over the conventional one are 44.92 dB and over 23.77 dB, respectively. The acquired improvement in Pl dB, gain, drain efficiency, and ACPR to WCDMA 1FA signal were 0.42 dB, 0.33 dB, $6.4\%$ and 5.4 dBc, respectively. Moreover, electrical length of $90{\circ}$ is reduced at each of the DGS carrier amplifier path and DGS peaking amplifier path, therefore the whole amplifier circuit size is considerably reduced.

Dispersion Managed Optical Transmission Links with Optimized Optical Phase Conjugator

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.372-376
    • /
    • 2009
  • In this paper, new and simple optical transmission link with fixed dispersion management (DM) scheme, i.e., pre(post) compensation and residual dispersion per span (RDPS) are fixed to net residual dispersion (NRD) = 0 ps/nm, and optical phase conjugator (OPC) having optimal position depending on launch power in WDM transmission system is proposed. Also, effective launch power range of WDM channels resulting 1 dB eye opening penalty (EOP) is induced as a function of OPC position. First, it is confirmed that, for applying DM into WDM transmission link fixed pre(post)compensation and RDPS, which are independence on exact system parameters except launch power, sufficiently are used in WDM links, but OPC with optimal position is needed for effective compensating impairments of WDM channels. And, it is confirmed that effective launch power is broader in case of RDPS = 100 ps/nm than in RDPS = 50 ps/nm. But, it is shown that the best OPC position offset is -0.6 km from a point of view of power window, which is defined as difference between maximum and minimum effective launch power.

Frequency Responses of Ambulatory ECG Systems and Their Correction by a Compensation Circuit

  • Iwao, K.;Yokoi, A.;Suzuki, S.;Goto, T.;Doniwa, K.;Okajima, M.
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 1990
  • Frequency responses of ambulatory electrocardiogram systems were measured. Phase shift was assessed by our improved Wagner's method. The characteristics of the systems were found much worse than that of ordinary ECG equipment both in gain and phase responses. The decay of -3dB in amplitude observed in 0.2Hz and the lead of 45 dog in phase was observed in 0.6Hz. In order to investigate which of these 2 responses play major role in generating false S -T deviation, mathe- matical filters were Composed in a computer and actual ECGs were fed. The false S-T deviation were found to be caused mostly by enormous lead in phase, and then, the compensation circuit to diminish the lead in phase was inserted in the commercial systemes. The compensated systems showed no false deviation in S-T segment.

  • PDF