• Title/Summary/Keyword: 0-dB Compensation

Search Result 168, Processing Time 0.024 seconds

Double-Sharpened Decimation Filter Employing a Pre-droop Compensator for Multistandard Wireless Applications

  • Jeong, Chan-Yong;Min, Young-Jae;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • This paper presents a double-sharpened decimation filter based on the application of a Kaiser and Hamming sharpening technique for multistandard wireless systems. The proposed double-sharpened decimation filter uses a pre-droop compensator which improves the passband response of a conventional cascaded integrator-comb filter so that it provides an efficient sharpening performance at half-speed with comparison to conventional sharpened filters. In this paper, the passband droop characteristics with compensation provides -1.6 dB for 1.25 MHz, -1.4 dB for 2.5 MHz, -1.3 dB for 5 MHz, and -1.0 dB for 10 MHz bandwidths, respectively. These results demonstrate that the proposed double-sharpened decimation filter is suitable for multistandard wireless applications.

Design of a Rceiver MMIC for the CDMA Terminal (CDMA 단말기용 수신단 MMIC 설계)

  • 권태운;최재하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • This paper presents a Receiver MMIC for the CDMA terminal. The complete circuit is composed of Low Noise Amplifier, Down Conversion Mixer, Intermediate Frequency Amplifier and Bias circuit. The Bias circuit implementation, which allows for compensation for threshold voltage and power supply voltage variation are provided. The proposed topology has high linearity and low noise characteristics. Results of the designed circuit are as follows: Overall conversion gain is 28.5 dB, input IP3 of LNA is 8 dBm, input IP3 of down conversion mixer is 0 dBm and total DC current consumption is 22.1 mA.

  • PDF

A 65-nm CMOS Low-Power Baseband Circuit with 7-Channel Cutoff Frequency and 40-dB Gain Range for LTE-Advanced SAW-Less RF Transmitters (LTE-Advanced SAW-Less 송신기용 7개 채널 차단 주파수 및 40-dB 이득범위를 제공하는 65-nm CMOS 저전력 기저대역회로 설계에 관한 연구)

  • Kim, Sung-Hwan;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.678-684
    • /
    • 2013
  • This paper describes a low-power baseband circuit for SAW-less LTE-Advanced transmitters. The proposed transmitter baseband circuit consists of a 2nd-order Tow-Thomas type active RC-LPF and a 1st-order passive RC LPF. It can provide a 7 multi-channel cut-off frequencies and wide gain control range of -41 dB ~ 0 dB with a 1-dB step. The proposed 2nd-order active RC-LPF adopts an op-amp in which three other sub-op amps are in parallel connected to reduce DC current for different cutoff frequency. In addition, each sub-op amp adopts both Miller and feed-forward phase compensation method to achieve an UGBW of more than 1-GHz with a small DC power consumption. The proposed baseband circuit is implemented in 65-nm CMOS technology, consuming DC power from 6.3 mW to 24.1 mW from a 1.2V supply voltage for each different cut-off frequency.

Distributed Video Coding for Illumination Compensation of Multi-view Video

  • Park, Sean-Ae;Sim, Dong-Gyu;Jeon, Byeung-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1222-1236
    • /
    • 2010
  • In this paper, we propose an improved distributed multi-view video coding method that is robust to illumination changes among different views. The use of view dependency is not effective for multi-view video because each view has different intrinsic and extrinsic camera parameters. In this paper, a modified distributed multi-view coding method is presented that applies illumination compensation when generating side information. The proposed encoder codes DC values of discrete cosine transform (DCT) coefficients separately by entropy coding. The proposed decoder can generate more accurate side information by using the transmitted DC coefficients to compensate for illumination changes. Furthermore, AC coefficients are coded with conventional entropy or channel coders depending on the frequency band. We found that the proposed algorithm is about 0.1~0.5 dB better than conventional algorithms.

A $\pi$-type Variable Attenuator with Low Phase Shift (저위상 변화 특성을 갖는 $\pi$-형 가변 감쇠기)

  • Park, Ung-Hee;Ahn, Gil-Cho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2066-2070
    • /
    • 2009
  • A voltage controlled attenuator using a PIN diode and two resistors of the $\pi$-type fixed attenuator is described in this paper. The proposed variable attenuator operating for a fixed attenuation range has a good input VSWR and a low intermodulation signal. For the low phase shift, a PIN diode is connected with open stub for the purpose of phase compensation. The stub for phase compensation is calculated by the Deloach method and the related circuit theory. This attenuator is easily fabricated on the microstrip and can be normally used in fine control circuits within small attenuation range. The fabricated attenuator for 2110~2170 MHz frequency band has about 4 dB of an attenuation range, $2^{\circ}$ of phase variance, and -20 dB of S11 according to the input voltage from 0 to 2.7 V.

Performance Analysis of Trellis Coded OFDM/M-ary PSK Systems in the presence of tarrier Frequency Offset (반송파 주파수 오프셋의 존재하에서 Trellis Coded OFDM/M-ary PSK 시스템의 성능 분석)

  • 조성언;박기식;오원근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.684-691
    • /
    • 2001
  • In this paper, the BER performance of OFDM/M-ary PSK systems is analyzed with considering carrier-frequency offset and TCM technique, which encodes and modulations simultaneously, is adopted to OFDWM-ary PSK systems for compensation of performance degradation according to carrier-frequency offset. As a result of analysis, the error performance of OFDM/M-ary PSK systems is degraded as the frequency offset is increased. And the frequency offset should be below 0.025 in order to achieve $BER= 10^{-3}$ with $E_b/N_o$ of 10 dB. Especially, when the TCM technique is adopted to OFDM/M-ary PSK systems, the performance improvement of about 4 dB is obtained in terms of $E_b/N_o$.

  • PDF

Multi-Stage CMOS OTA Frequency Compensation: Genetic algorithm approach

  • Mohammad Ali Bandari;Mohammad Bagher Tavakoli;Farbod Setoudeh;Massoud Dousti
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.690-703
    • /
    • 2023
  • Multistage amplifiers have become appropriate choices for high-speed electronics and data conversion. Because of the large number of high-impedance nodes, frequency compensation has become the biggest challenge in the design of multistage amplifiers. The new compensation technique in this study uses two differential stages to organize feedforward and feedback paths. Five Miller loops and a 500-pF load capacitor are driven by just two tiny compensating capacitors, each with a capacitance of less than 10 pF. The symbolic transfer function is calculated to estimate the circuit dynamics and HSPICE and TSMC 0.18 ㎛. CMOS technology is used to simulate the proposed five-stage amplifier. A straightforward iterative approach is also used to optimize the circuit parameters given a known cost function. According to simulation and mathematical results, the proposed structure has a DC gain of 190 dB, a gain bandwidth product of 15 MHz, a phase margin of 89°, and a power dissipation of 590 ㎼.

Blocking Artifacts Detection in Frequency Domain for Frame Rate Up-conversion (프레임율 변환을 위한 주파수 영역에서의 블로킹 현상 검출)

  • Kim, Nam-Uk;Jun, Dongsan;Lee, Jinho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.472-483
    • /
    • 2016
  • This paper proposes a blocking artifacts detection algorithm in frequency domain for MC-FRUC (Motion Compensated Frame Rate Up-Conversion). Conventional MC-FRUC algorithms occur blocking artifacts near interpolated block boundaries since motion compensation is performed from block-based motion vector. For efficiently decreasing blocking artifacts, this paper analyses frequency characteristics of the interpolated frame and reduces blocking artifacts on block boundaries. In experimental results the proposed method shows better subjective quality than some conventional FRUC method and also increases the PSNR(Peak Signal to Noise Ratio) value on average 0.45 dB compared with BDMC(Bi-Directional Motion Compensation).

Adaptive illumination change compensation method for multi-view video coding (다시점 비디오 부호화를 위한 적응적인 조명변화 보상 방법)

  • Hur, Jae-Ho;Cho, Suk-Hee;Hur, Nam-Ho;Kim, Jin-Woong;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.407-419
    • /
    • 2006
  • In this paper, an adaptive illumination change compensation method is proposed for multi-view video coding. In multi-view video, an illumination change can occur due to physically imperfect camera calibration, each different camera position and direction, and so on. These characteristics can cause a performance decrease in the multi-view video coding that uses an inter-view prediction by referring to the pictures obtained from the neighboring views. By using the proposed method, a compression ratio of the proposed method in the multi-view video coding is increased, and finally $0.1{\sim}0.6dB$ PSNR(Peak Signal-to-Noise Ratio) improvement was obtained compared with the case of not using the proposed method.

Analysis and Compensation of RF Path Imbalance in LINC System (LINC 전력 증폭기의 경로 오차 영향 분석 및 보상에 관한 연구)

  • Lim, Jong-Gyun;Kang, Won-Shil;Ku, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.857-864
    • /
    • 2010
  • In this paper, we analyse the effect of the path imbalances(gain and phase mismatches) in LINC(LInear amplification with Nonlinear Component) system, and propose a simple scheme using LUTs(Look Up Table) to compensate the path imbalances. The EVM(Error Vector Magnitude) and ACPR(Adjacent Channel Power Ratio) of the LINC system are degraded significantly by the path imbalances because it adopts an outphasing technique. The EVM and ACPR are theoretically extracted for two variables(gain and phase mismatch factors) and 2-D LUTs for those are generated based on the analysis. The efficient and simple compensation scheme for the path imbalances is proposed using the 2-D LUTs. A LINC system with the suggested compensation scheme is implemented, and the proposed method is verified with an experiment. A 16-QAM signal with 1.5 MHz bandwidth is used. Before the compensation, the path gain ratio was 95 % and phase error was $19.33^{\circ}$. The proposed scheme adjusts those values with 99 % and $0.5^{\circ}$, and improves ACPR about 18.1 dB.