• Title/Summary/Keyword: -galactosidase

Search Result 671, Processing Time 0.059 seconds

A Useful Material Production from Whey : Effect of Carbon Sources on Zooglan Production by Zoogloea ramigera (유청으로부터 유용물질 생산 : Zoogloea remigera에 의한 Zooglan 생산에서 탄소원의 영향)

  • 김동운;이재찬
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.221-229
    • /
    • 1995
  • Effects of carbon sources on zooglan production by Zoogloea ramigera were investigated. The production of zooglan was varied according to the carbon sources used. The largest amount of zooglan was obtained when lactose was used as carbon source and fermentation broth with lactose showed the higher viscosity. The effects of carbon sources were in decreasing order of lactose, glucose, galactose and sucrose. The viscosities of purified zooglan solutions (5g/L) obtained from different carbon sources were measured. When lactose was used, the viscosities of zooglan solutions was quite high and other carbon sources such as glucose and galactose gave little lower viscosities than lactose but sucrose gave very low values. On the other hand, it could be postulated that most of lactose is hydrolyzed by intracellular ${\beta}$-galactosidase.

  • PDF

Genome-wide analysis of sequence variations in eight inbred watermelon lines (수박계통간 염색체수준의 유전적변이 분석)

  • Kim, Youn-Sung;Ko, Chan-Sup;Yang, Hee-Beom;Kang, Sun-Chul
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.164-173
    • /
    • 2016
  • To investigate the genetic basis of phenotypic differences, sequence variations were analyzed in 8 inbred watermelon lines by re-sequencing. The number of sequence variations differed depending on the chromosome. Only 12.9% of SNPs were found within genes, whereas the rest were detected in promoter or intergenic regions. SNP density analysis showed that there was a highly variable region at the end of chromosome 6, which is similar to previously published findings. However, this region with high SNP density did not show much variation between the lines. In contrast, highly conserved regions with a size of 6.5-10 Mb were found in chromosomes 10 and 11. Pathway analysis suggested that the DIMBOA (a natural antibiotic)-glucoside degradation pathway was significantly different between the lines, indicating that the eight lines may have different levels of pathogen resistance. Among the carbohydrate-related genes, the alpha-galactosidase gene was the most variable among the lines. Information from this study will be helpful in understanding the watermelon breeding process at the molecular level.

Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.382-390
    • /
    • 2006
  • Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.

Cloning and Regulation of Schizosaccharomyces pombe Gene Encoding Ribosomal Protein L11

  • Kim, Hong-Gyum;Lee, Jin-Joo;Park, Eun-Hee;Sa, Jae-Hoon;Ahn, Ki-Sup;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.379-384
    • /
    • 2001
  • The cDNA encoding ribosomal protein was identified from a cDNA library of Schizosaccharomyces pombe. The nucleotide sequence of the 548 by cDNA clone reveals an open reading frame, which encodes a putative protein of 166 amino acids with a molecular mass of 18.3 kDa. The amino acid sequence of the S. pombe L11 protein is highly homologous with those of rat and fruit, while it is clearly less similar to those of prokaryotic counterparts. The 1,044 by upstream sequence, and the region encoding N-terminal 7 amino acids of the genomic DNA were fused into the promoterless $\beta$-galactosidase gene of the shuttle vector YEp357 in order to generate the fusion plasmid pHY L11. Synthesis of $\beta$-galactosidase from the fusion plasmid varied according to the growth curve. It decreased significantly in the growth-arrested yeast cells that were treated with aluminum chloride and mercuric chloride. However, it was enhanced by treatments with cadmium chloride ($2.5\;{\mu}M$), zinc chloride ($2.5\;{\mu}M$), and hydrogen peroxide (0.5 mM). This indicates that the expression of the L,11 gene could be induced by oxidative stress.

  • PDF

A Case of Krabbe Disease with Infantile Spasm (영아 연축을 동반한 Krabbe병 1례)

  • Kim, Ja Kyoung;Kim, Dal Hyun;Kang, Bo Young;Kwon, Young Se;Hong, Young Jin;Son, Byong Kwan;Yoon, Hye Ran
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.95-99
    • /
    • 2003
  • Krabbe disease is a rare autosomal recessive disorder clinically characterized by retardation in motor development, prominent spasticity, seizures, and optic atrophy. Pathologically, there are many globoid cells in the white matter, in addition to the lack of myelin and the presence of severe gliosis. Hence Krabbe disease is known as globoid cell leukodystrophy. Biochemically, the primary enzymatic deficiency in Krabbe disease is galactocerebroside beta-galactosidase. Patients with Krabbe disease can be subdivided into the early-onset type and late-onset type, according to the onset of clinical manifestations. Most patients with early-onset type die before their second birthday. We describe a girl with Krabbe disease associated with uncontrolled seizures, which was confirmed with biochemical study and MRI. The clinical findings of this patient included hyperirritability, scissoring of the legs, flexion of arm, and clenching of the fists, and generalized tonic seizures. EEG showed hypsarrhythmia, and MRI demonstrated degenerative white matter changes in bilateral periventricular white matter, posterior rim of internal capsule, basal ganglia and brain stem on T2W1 and FLAIR image. The diagnosis was based on clinical features of progressive neurologic deterioration in conjunction with low galactocerebroside beta-galactosidase activity.

Production of Chlorphenesin Galactoside by Whole Cells of ${\beta}$-Galactosidase-Containing Escherichia coli

  • Lee, Sang-Eun;Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.826-832
    • /
    • 2013
  • We investigated the transgalactosylation reaction of chlorphenesin (CPN) using ${\beta}$-galactosidase (${\beta}$-gal)-containing Escherichia coli (E. coli) cells, in which galactose from lactose was transferred to CPN. The optimal CPN concentration for CPN galactoside (CPN-G) synthesis was observed at 40 mM under the conditions that lactose and ${\beta}$-gal (as E. coli cells) were 400 g/l and 4.8 U/ml, respectively, and the pH and temperature were 7.0 and $40^{\circ}C$, respectively. The time-course profile of CPN-G synthesis under these optimal conditions showed that CPN-G synthesis from 40 mM CPN reached a maximum of about 27 mM at 12 h. This value corresponded to an about 67% conversion of CPN to CPN-G, which was 4.47-5.36-fold higher than values in previous reports. In addition, we demonstrated by thin-layer chromatography to detect the sugar moiety that galactose was mainly transferred from lactose to CPN. Liquid chromatography-mass spectrometry revealed that CPN-G and CPN-GG (CPN galactoside, which accepted two galactose molecules) were definitively identified as the synthesized products using ${\beta}$-gal-containing E. coli cells. In particular, because we did not use purified ${\beta}$-gal, our ${\beta}$-gal-containing E. coli cells might be practical and cost-effective for enzymatically synthesizing CPN-G. It is expected that the use of ${\beta}$-gal-containing E. coli will be extended to galactose derivatization of other drugs to improve their functionality.

A novel GLA mutation in a Korean boy with an early cardiac manifestation of Fabry disease

  • Kwon, Soonhak;Park, Jin-Sung;Jung, Jae Hun;Hwang, Su Kyeong;Kim, Yeo Hyang;Lee, Yun Jeong
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 2018
  • Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by the deficiency of ${\alpha}$-galactosidase A. Patients with classical FD present acroparesthesia, hypohidrosis, cornea verticillata, disseminated angiokeratoma, and microalbuminuria in childhood, and develop life-threatening renal, cardiac, and cerebrovascular complications typically after the fourth decade of life. To date, more than 700 mutations responsible for FD have been identified in the human GLA gene. Herein, we report a novel GLA mutation, c.1117_1141del25 (p.Gly373Profs*10), identified in an 11-year-old Korean boy with FD presenting early cardiac and neurologic manifestation and in other affected family members. The boy had acroparesthesia, hypohidrosis, cornea verticillata, and left ventricular hypertrophy. His mother and sister also had acroparesthesia. Two males on the mother's side had similar pain and died of unknown causes. The plasma ${\alpha}$-galactosidase A activity (4.1 nmol/hr/mg protein) of the patient was markedly lower than the mean value of the controls. The plasma level of globotriaosylsphingosine was elevated in the patient and all the carriers. We concluded the novel GLA mutation c.1117_1141del25 is a pathogenic mutation for FD, probably related to the early cardiac manifestation of FD.

Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris

  • Simila, Janika;Gernig, Anita;Murray, Patrick;Fernandes, Sara;Tuohy, Maria G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1653-1663
    • /
    • 2010
  • The first gene (${\alpha}$-gal1) encoding an extracellular ${\alpha}$-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The ${\alpha}$-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal ${\alpha}$-galactosidases belonging to glycosyl hydrolase family 27. The ${\alpha}$-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant ${\alpha}$-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at $70^{\circ}C$, pH 4.5, and lost no activity over 10 days at $50^{\circ}C$. ${\alpha}$-Gal1 followed Michaelis-Menten kinetics ($V_{max}\;of\;240.3{\mu}M/min/mg,\;K_m\;of\;0.294 mM$) and was inhibited competitively by galactose ($K_m{^{obs}}$ of 0.57 mM, $K_i$ of 2.77 mM). The recombinant T. emersonii ${\alpha}$-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the ${\alpha}$-galactosidic linkage. Owing to its substrate preference and noteworthy stability, ${\alpha}$-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.

Effects of Glucose Repression and Plasmid Copy Number on Cloned Gene Expression in Recombinant Yeast (재조합 효모에서의 포도당 억제와 Plasmid 수가 유전자 발현에 미치는 영향)

  • 홍억기
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.339-345
    • /
    • 1994
  • Deletions between UASG and the GALI TATA box reduced glucose repression and allowed constitutive expression of the gene product in the absence of galactose. The relative inducer level (ratio of galactose/glucose concentrations) affected the extent of gene expression and glucose repression. Glucose repression was reduced by a factor of 2 to 5 as the relative inducer level increased. In the medium containing galactose only, induction of ${\beta}$-galactosidase synthesis by galactose increased with plasmid copy number. On the contrary, plasmid copy number did not affect significantly ${\beta}$-galactosidase synthesis in the medium containing both glucose and galactose (2% glucose+2% galactose), which might be due to glucose repression caused by high glucose concentration. However, when the medium contained the relatively high inducer level (0.4% glucose+0.8% galactose), ${\beta}$-galactosidase synthesis increased with plasmid copy number, indicating that the beneficial effect of higher galactose concentration was weaker than the repressive effect of higher glucose concentration.

  • PDF

Galactooligosaccharide Synthesis by Active ${\beta}$-Galactosidase Inclusion Bodies-Containing Escherichia coli Cells

  • Lee, Sang-Eun;Seo, Hyeon-Beom;Kim, Hye-Ji;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1151-1158
    • /
    • 2011
  • In this study, a galactooligosaccharide (GOS) was synthesized using active ${\beta}$-galactosidase (${\beta}$-gal) inclusion bodies (IBs)-containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli ${\beta}$-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and $37^{\circ}C$, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that ${\beta}$-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli ${\beta}$-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. ${\beta}$-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.