• Title/Summary/Keyword: -energy-dispersive x-ray-

Search Result 1,064, Processing Time 0.024 seconds

Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila

  • Malarkodi, C.;Rajeshkumar, S.;Paulkumar, K.;Jobitha, G. Gnana;Vanaja, M.;Annadurai, G.
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.83-91
    • /
    • 2013
  • The synthesis of semiconductor nanoparticles is a growing research area due to the prospective applications for the development of novel technologies. In this paper we have reported the biosynthesis of Cadmium sulfide nanoparticles (CdSNPs) by reduction of cadmium sulphate solution, using the bacteria of Serratia nematodiphila. The process for the synthesis of CdS nanoparticles is fast, novel and ecofriently. Formation of the CdS nanoparticles was confirmed by surface Plasmon spectra using UV-Vis spectrophotometer and absorbance strong peak at 420 nm. The morphology of crystalline phase of nanoparticles was determined from Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy and X-ray diffraction (XRD) spectra. The average size of CdS nanoparticles was in the range of 12 nm and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of CdS nanoparticles in the colloidal solution. Antibacterial activity against some bacteria such as Bacillus subtilis, Klebsiella planticola. CdS nanoparticles exhibiting good bactericidal activity.

Thermal Plasma Synthesis of Nano Composite Particles (열플라즈마에 의한 복합 나노 입자 제조)

  • Jeong, Min-Hee;Kim, Heon-Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.676-679
    • /
    • 2010
  • Nano composite particles were synthesized from a bulk ZrVFe alloy ingot by transferred DC thermal plasma. Effects of plasma gas flow rate on the characteristics of the produced nano composite particles were investigated. The characteristics of the synthesized powder were analyzed by field scanning electron microscopy (FE-SEM), light scattering particle size analyzer (PSA), energy dispersive X-ray spectroscopy (EDS), X-ray diffractometer (XRD), and Brunauer-Emmett-Teller (BET) surface area analyzer. As the flow rate of plasma gas increased from 20 L/min to 40 L/min, the average particle size decreased from 91 nm to 55 nm, the particle size distribution became narrower, the surface area increased from $200\;m^2/g$ to $255\;m^2/g$, the particle composition was nearly unaffected, and the particle crystallinity was improved.

Synthesis and Characterization of SiO2-Sheathed ZnSe Nanowires

  • Kim, Hyun-Su;Jin, Chang-Hyun;A,, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.398-402
    • /
    • 2012
  • ZnSe/$SiO_2$ coaxial nanowires were synthesized by a two-step process: thermal evaporation of ZnSe powders and sputter-deposition of $SiO_2$. Two different types of nanowires are observed: thin rod-like ones with a few to a few tens of nanometers in diameter and up to a few hundred of micrometers in length and wide belt-like ones with a few micrometers in width. Room-temperature photoluminescence (PL) measurement showed that ZnSe/$SiO_2$ coaxial nanowires had an orange emission band centered at approximately 610 nm. The intensity of the orange emission from the $SiO_2$-sheathed ZnSe nanowires was enhanced significantly by annealing in a reducing atmosphere whereas it was degraded by annealing in an oxidizing atmosphere. The origins of the PL changes by annealing are discussed based on the energy-dispersive X-ray spectroscopy analysis results.

Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil

  • Bahrami, Reza;Khayat, Navid;Nazarpour, Ahad
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.103-113
    • /
    • 2020
  • Gypsiferous soils classified as problematic soils due to the dissolution of gypsum. Presence of gypsum in the soils texture subjected to steady flow can cause serious damages for the buildings, roads and water transmission canals. Therefore, researchers have conducted a series of physical, mechanical and microstructural laboratory tests to study the effect of gypsum leaching on the geotechnical properties of a lean clay containing 0%, 3%, 6%, 9%, 12%, and 15% raw gypsum. In addition, a combination of two nano-chemical stabilizers named Terrasil and Zycobond was used in equal proportions to stabilize the gypsiferous clayey samples. The results indicated that gypsum leaching considerably changed the physical and mechanical properties of gypsiferous soils. Further, adding the combination of Terrasil and Zycobond nano-polymeric stabilizers to the gypsiferous soil led to a remarkable reduction in the settlement drop, compressibility, and electrical conductivity (EC) of the water passing through the specimens, resulting in improving the engineering properties of the soil samples. The X-ray diffraction patterns indicate that stabilization by terrasil and zycobond causes formation of new peaks such as CSH and alteration of pure soil structure by adding raw gypsum. Scanning electron microscope (SEM) images show the denser texture of the soil samples due to chemical stabilization and decrease of Si/Al ratio which indicates by Energy dispersive X-ray (EDS) interpretation, proved the enhance of shear strength in stabilized samples.

Characterization and Photonic Effect of Novel Ag-CNT/TiO2 Composites and their Bactericidal Activities

  • Zhang, Feng-Jun;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1981-1987
    • /
    • 2010
  • A novel composite (Ag-CNT/$TiO_2$) of silver treated carbon nanotubes (Ag-CNT) and $TiO_2$ was synthesized via wet chemistry followed by a heat treatment. The dispersion and structure of the silver in the synthesized composites determined by X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy(TEM). XRD patterns of the composites showed that the composites contained a mixing anatase and rutile phase. The EDX spectra showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the CNT network, and silver particles were virtually fixed on the surface of the tube. The photocatalysis degraded behaviors of the Ag-CNT/$TiO_2$ composites of the methylene blue, which increased with an increase of the silver component. The Ag-CNT/$TiO_2$ composites have excellent antibacterial activities against Escherichia coli (E. Coli), Pseudomonas aeruginosa (P. Aeru) and Bacillus subtilis (B. Sub) under visible light.

High-Temperature Corrosion Characteristics of T22 and T92 Steel in SO2-Containing Gas at 650 ℃ (650 ℃의 SO2 가스 환경 하에서 T22와 T92 강의 고온 부식특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.285-291
    • /
    • 2019
  • In this study, the corrosion characteristics of T22 and T92 steel were investigated in 6O2 + 16CO2 + 2SO2 gas environment at 650 ℃. Corrosion characteristics were characterized by weight gain, oxide layer thickness, scanning electron microscope, optical microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. T22 and T92 steel tended to stagnate oxide layer growth over time. Oxidation kinetics were analyzed using the data of oxide layer thickness, and a regression model was presented. The regression model was significantly acceptable. The corrosion rate between the two steels through the regression model showed significant difference. The T92 steel was approximately twice as large as the time exponent and showed very good corrosion resistance compared to the T22 steel. In both steels, the oxide layer mainly formed a Fe-rich oxide layer composed of hematite (Fe2O3), magnetite (Fe3O4), and spinel (FeCr2O4). Sulfide segregation occurred in the oxide layer due to SO2 gas. However, the locations of segregation for the T22 and T92 steel were different.

Mechanical Properties of TiN and DLC coated Rod for Pedicle Screw System (TiN 및 DLC 코팅된 척추용 나사못 시스템 Rod의 기계적 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • In this study, surface morphology and mechanical property of TiN and DLC coated pedicle screw have been investigated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, vickers hardness test, axial gripping, and axial torsional gripping capacity test. From the EDS and XRD results, the composition and crystal structure of TiN and DLC coated surface were verified. The hardness value was increased by TIN and DLC coating, and the DLC coating surface has the highest value. The gripping capacity also showed higher value for TiN and DLC coated specimen than that of non-coated (Ti alloy) surface. The surface morphology of gripping tested specimen showed rougher scratched surface from Ti alloy than TiN and DLC coated layer.

Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material

  • Kim, Dong-Young;Yoon, Young-Ho;Jo, Kwan-Jun;Jung, Gil-Bong;An, Chong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.150-158
    • /
    • 2016
  • This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.

Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies

  • Otari, S.V.;Pawar, S.H.;Patel, Sanjay K.S.;Singh, Raushan K.;Kim, Sang-Yong;Lee, Jai Hyo;Zhang, Liaoyuan;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.731-738
    • /
    • 2017
  • A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.

Annealing of Sn Doped ZnO Thin Films Grown by Radio Frequency Powder Sputtering (라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리)

  • Lee, Haram;Jeong, Byeong Eon;Yang, Myeong Hun;Lee, Jong Kwan;Choi, Young Bin;Kang, Hyon Chol
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.111-119
    • /
    • 2018
  • We report the post-annealing effect of Sn doped ZnO (ZnO:Sn) thin film grown on sapphire (001) substrate using radio-frequency powder sputtering method. During thermal annealing in a vacuum atmosphere, the ZnO:Sn thin film is transformed into a porous thin film. Based on X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses, a possible mechanism for the production of pores is presented. Sn atoms segregate to form clusters that act as catalysts to dissociate Zn-O bonds. The Zn and O atoms subsequently vaporize, leading to the formation of pores in the ZnO:Sn thin film. We also found that Sn clusters were oxidized to form SnO or $SnO_2$ phases.