• Title/Summary/Keyword: 히스티딘

Search Result 65, Processing Time 0.024 seconds

Preparation and Characterization of the Histidine-graft-Low Molecular Weight Water-Soluble Chitosan as a Gene Carrier (유전자 전달체로서 히스티딘이 결합된 저분자량 수용성 키토산의 제조와 특성)

  • Park, Jun-Kyu;Kim, Dong-gon;Choi, Changyong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.607-611
    • /
    • 2007
  • To improve transfection efficiency, we prepared histidine-low molecular weight water-soluble chitosan (LMWSC) having the potential to form complex with DNA as a cationic polymer. Histidine-LMWSC was synthesized by the esterification reaction and removing phthaloyl group. The histidine-LMWSC was characterized using FT-IR, $^1H$ NMR spectra. Histidine-LMWSC was complexed with plasmid DNA (pDNA) in various polymer/DNA (N/P) weight ratios, and the complex was identified using gel retardation assay. The particle sizes of the hisitidine-LMWSC/DNA complexes were measured on a DLS instrument by fixing the histidine-LMWSC/DNA weight ratio of 10/1. Owing to the utilization of a large excess amount of cationic LMWSC against anionic DNA, the particle size of histidine-LMWSC/DNA complexes was in the range of 100~200 nm. Therefore, histidine-LMWSC will be useful in the development of gene carriers.

Inhibition Effects of Some Amino Acids on the Corrosion of Nickel in Hydrochloric Acid and Sulfuric Acid (염산과 황산 용액에서 니켈의 부식에 미치는 아미노산의 부식억제효과)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.125-131
    • /
    • 2015
  • Inhibition effects of histidine (His), methionine (Met) on the corrosion of nickel were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency for the nickel corrosion depended on the anodic inhibition. Amino acid adsorption process on nickel surface in the solution of HCl can be explained by modified Langmuir isotherm, however, in the solution of $H_2SO_4$ by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules. The molecule of histidine dissolved in HCl-solution were physically adsorbed due to the electrostatic interaction between the surface of {$Ni-Cl^-$} and the {$-NH{_3}^+$} and {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Ni and the lone pair of electron in His and Met.

Mutagenic Test of Gardenia Yellow Pigment (치자 황색색소에 대한 변이원성 시험)

  • 김희구
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.1
    • /
    • pp.72-76
    • /
    • 1998
  • Gardenia yellow pigment produced by Gardenia jasminoides Ellis was tested for reverse mutagenic test in Salmonella typhimurium stains TA1535, TA1537, TA98 and TA100 at concentrations raging form 6.25 to 200$\mu\textrm{g}$/$m\ell$ per plate. No significant reverse mutagenic activity was observed in any of the S. typhimurium strains, in either presence or absence of S9 mix. There was no toxicity to the bacteria. These result indicate that yellow pigment doesn't have mutagenicity.

  • PDF

The Effect of Thyroxine Status on Hepatic Levels of 10-Formyltetrahydrofolate Dehydrogenase (갑상선 호르몬이 흰 쥐의 간에 있는 10-Formyltetrahydrofolate Dehydrogenase에 미치는 영향)

  • Min, Hye-Seon
    • Journal of Nutrition and Health
    • /
    • v.24 no.4
    • /
    • pp.350-355
    • /
    • 1991
  • The effect of thyroid hormone on hepatic levels of 10-formyltetrahydrofolate dehydrogenase (10-formyltetrahydrofolate : NADP oxidoreductase, E.C. 1.5.1.6.) was studied using Sprague-Dawley rat. Hypothyroidism increased histidine oxidation by 5 fold and increased 10-formyltetrahydrofolate dehydrogenase activity by 142%, and also decreased methylenetetrahydrofolate reductase activity by 52%. Decreased methylenetetrahydrofolate reductase acts by decreasing synthesis of 5-methyl folate, thereby increasing the proportion of non-methyl folate required for folate-dependent reactions. Increased histidine oxidation produced by hypothyroidism may be attributed to its effect in decreasing 10-formyltetrahydrofolate dehydrogenase.

  • PDF

Inhibition Effects of Some Amino Acids on the Corrosion of Cobalt in Hydrochloric Acid and Sulfuric Acid (염산과 황산 용액에서 코발트의 부식에 미치는 아미노산의 부식억제효과)

  • Park, Hyunsung;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.327-334
    • /
    • 2019
  • Inhibition effects of cysteine(Cys), methionine(Met), and histidine(His) on the corrosion of cobalt were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency (IE) in the amino acids for the cobalt corrosion depended on the mixed inhibition. However, IE in the solution of $H_2SO_4$ depended more on the anodic and in the solution of HCl on the cathodic inhibition. Amino acid adsorption process on cobalt surface in the solution can be explained by modified Langmuir isotherm. The molecules of histidine dissolved in both of the solution were physically adsorbed due to the electrostatic interaction between the surface of {$Co-Cl^{-{\delta}}$} and the {$-NH_3{^+}$} or {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Co and the lone pair of electron in S-atom in Cys and Met.

Amidase activity of phage K11 lysozyme (파지 K11 라이자소임의 amidase 활성도)

  • Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2006
  • The construction, purification, and characterization of hexahistidine-tagged phage K11 lysozyme are carried out in this study. The results showed that the enzymatic activities of K11 lysozyme are not affected by the purification tag. The optimum pH of K11 lysozyme is 7.2-7.4. The amidase activity of K11 lysozyme was also measured in the presence of different cations. The addition of $Ca^2+$ and $Mg^2+$ almost completely shut down the amidase activity but $Zn^2+$ and $Na^+$ maintained the amidase activity. In the presence of 100 mM $Zn^2+$ the amidase activity was nearly abolished.

  • PDF

Effect of Food Additives on the Histamine Formation during Processing and Storage of Mackerel (2) Effect of Glucose, Glycine, Sucrose and Sorbic Acid (고등어의 가공 및 저장중의 히스타민 생성에 미치는 첨가물의 영향(2) Glucose, Glycine, Sucrose 및 Sorbic Acid의 영향)

  • KANG Jin-Hoon;PARK Yeung-HO
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.485-491
    • /
    • 1984
  • In succession to the previous paper, the effect of the addition of food additives, such as glucose, glycine, sucrose and sorbic acid on the histamine formation and histidine decarboxylase activity in mackerel muscle during storage at $25^{\circ}C$ was studied. Additionally, the effect of different rasping condition of mackerel muscle on the histamine formation was also studied. It was estimated that the rasping condition of mackerel muscle also affected to the histamine formation, by showing that much histamine was detected in homogenized muscle than in ground muscle when glucose and sucrose were added. The addition of glycine was inhibitory upon the histamine formation and histidine decarboxylase activity, which, in the muscle added $10\%$ of glycine, the histamine content was below the critical concentration of poisoning for histamine during storage for 5 days at $25^{\circ}C$. The addition of sorbic acid was also inhibited the histamine formation and histidine decarboxylase activity, and the inhibitory effect of $0.2\%$ addition was greater than $0.1\%$ addition.

  • PDF

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Copper Stress (생분해 되는 다양한 킬레이트가 구리에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • Phytoextraction is a method of phytoremediation using plants to clean up metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environmentally friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Copper (Cu) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetracyclic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Cu to analyze the effect on root growth. Cys, His, and citrate strongly diminished the inhibitory effect of Cu on root growth of plants. The effect of oxalate was weak, and malate and succinate did not show significant effects. EDTA diminished and EDA promoted the inhibitory effects of Cu on root growth. These effects of chelating agents are correlated with Cu uptake into the roots. In conclusion, as biodegradable chelating agents, Cys, His, and citrate are good candidates for highly Cu-contaminated areas, while EDA can be useful in phytoextraction for Cu.

9-Methyl Folate, an Antagonist of Folic Acid : Ist Effect on the Metabolism of Folic Acid in the Rat (염산의 항비타민제인 9-Methyl Folate가 흰쥐의 엽산대사에 미치는 영향)

  • Min, Hye-Seon
    • Journal of Nutrition and Health
    • /
    • v.24 no.4
    • /
    • pp.337-343
    • /
    • 1991
  • The effect of 9-methyl folate on histidine oxidation, the uptake of an injected dose of $[^{3}H]folate$ by the livers and kidneys, the hepatic and blood folate levels were investigated by feeding crude x-methyl folate(XMF) at a level of 5 g per kg diet. 9-Methyl folate is konwn as a major forate antagonist in XMF to produce deficiency signs in rat. Feeding of XMF decreased histidine oxidation and hepatic folate levels significantly, which showed the function of 9-methyl folate as an antifolate in rats. The hepatic uptake of labeled folate in XMF- fed rats was decreased significantly. These data led to conclude that 9-methyl folate inhibited folate uptake and retention by tissue, especially liver, which could explain the low liver folate levels and the decreased histidine oxidation. However, only very low level of 9-methyl folate was detected in liver. It suggested that 9-methyl folate may be metabolized very quickly in the liver after uptaken.

  • PDF