DOI QR코드

DOI QR Code

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Copper Stress

생분해 되는 다양한 킬레이트가 구리에 노출된 식물의 뿌리성장에 미치는 영향

  • Lee, Sang-Man (Division of Applied Biology and Chemistry, School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • 이상만 (경북대학교 응용생명과학부)
  • Published : 2010.01.30

Abstract

Phytoextraction is a method of phytoremediation using plants to clean up metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environmentally friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Copper (Cu) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetracyclic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Cu to analyze the effect on root growth. Cys, His, and citrate strongly diminished the inhibitory effect of Cu on root growth of plants. The effect of oxalate was weak, and malate and succinate did not show significant effects. EDTA diminished and EDA promoted the inhibitory effects of Cu on root growth. These effects of chelating agents are correlated with Cu uptake into the roots. In conclusion, as biodegradable chelating agents, Cys, His, and citrate are good candidates for highly Cu-contaminated areas, while EDA can be useful in phytoextraction for Cu.

Phytoextraction은 식물을 이용하여 환경 정화하는 phytoremediation의 일부분으로서 금속으로 오염된 토양을 정화하는 것이다. 토양에 존재하는 금속의 추출을 용이 하기 위해서 현재 다양한 킬레이트가 사용되고 있다. Phytoextraction이 경제적이고 친환경적인 장점이 있지만 고농도로 오염된 지역에서는 적용이 어려운데 이는 식물이 이러한 지역에서 살아남기 어렵기 때문이며 이러한 문제점을 해결하는 것이 본 연구의 목적이다. 연구 대상의 금속으로서 구리를 선택하였고, 킬레이트는 아미노산인 시스테인과 히스티딘, 작은 크기의 유기산으로서 citric acid, malic acid, succinic acid, oxalic acid, 그리고 ethylenediamine (EDA)를 선택하였으며, EDTA는 비교대상으로 본 연구에 사용되었다. 다양한 농도의 구리를 포함하는 배지에 식물을 키우면서 여러 킬레이트가 식물의 뿌리 성장에 미치는 영향을 분석하였다. 시스테인, 히스티딘, 그리고 citric acid은 식물의 성장을 억제하는 구리의 영향을 완화시켜 주었지만 EDA는 오히려 더 강화시켜 주었다. 또한 킬레이트의 식물성장에 대한 영향은 구리의 식물 내 흡수를 억제 또는 촉진에 의한 것이다. 따라서 구리의 식물성장억제를 완화시켜주는 시스테인, 히스티딘, 그리고 citric acid는 고농도의 구리로 오염된 지역에 식물의 성장이 가능하도록 사용될 수 있으며 EDA는 기존의 phytoextraction에 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860-865. https://doi.org/10.1021/es960552a
  2. Bucheli-Witschel, M. and T. Egli. 2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbial. Rev. 25, 69-106. https://doi.org/10.1111/j.1574-6976.2001.tb00572.x
  3. Cooper, E. M., J. T. Sims, J. W. Cunningham, J. W. Huang, and W. R. Berti. 1999. Chelate-assisted phytoextraction of lead from contaminated soils. J. Environ. Qual. 28, 1709-1719. https://doi.org/10.2134/jeq1999.00472425002800060004x
  4. Cunningham, S. D., T. A. Anderson, A. P. Schwab, and F. C. Hsu. 1996. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron. 56, 55-114. https://doi.org/10.1016/S0065-2113(08)60179-0
  5. Cunningham, S. D. and D. W. Ow. 1996. Promises and prospects of phytoremediation. Plant Physiol. 110, 715-719.
  6. Ebbs, S. D. and L. V. Kochian. 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ. Sci. Technol. 32, 802-806. https://doi.org/10.1021/es970698p
  7. Epstein, A. L., C. D. Gussman, M. J. Blaylock, U. Yermiyahu. J. W. Huang, Y. Kapulnik, and C. S. Orser. 1999. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil 208, 87-94. https://doi.org/10.1023/A:1004539027990
  8. Godbold, D. L., W. J. Horst, J. C. Collins, D. A. Thurman, and H. Marschner. 1984. Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. J. Plant Physiol. 116, 59-69. https://doi.org/10.1016/S0176-1617(84)80084-X
  9. Goyer, R. A. 1997. Toxic and essential metal interactions. Annu. Rev. Nutr. 17, 37-50. https://doi.org/10.1146/annurev.nutr.17.1.37
  10. Grcman, H., D. Vodnik, S. Velikonja-Bolta, and D. Lestan. 2003. Ethylenediaaminedisuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J.Environ. Qual. 32, 500-506. https://doi.org/10.2134/jeq2003.0500
  11. Hong, J. and P. N. Pintauro. 1996. Selective removal of heavy metals from contaminated kaolin by chelators. Water Air Soil Pollut. 87, 73-91. https://doi.org/10.1007/BF00696830
  12. Huang, J. W., J. J. Chen, W. R. Berti, and S. D. Cunningham. 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci.Technol. 31, 800-805. https://doi.org/10.1021/es9604828
  13. Kayser, A., K. Wenger, A. Keller, W. Attinger, H. R. Felix, S. K. Gupta, and R. Schulin. 2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ. Sci. Technol. 34, 1778-1783. https://doi.org/10.1021/es990697s
  14. Kerkeb, L. and U. Krämer. 2003. The role of free histidine in xylem loading of nickel in Asylum lesbiacum and Brassica juncea. Plant Physiol. 131, 716-724. https://doi.org/10.1104/pp102.010686
  15. Kos, B. and D. Leštan. 2003. Influence of biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogen modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253, 403-411. https://doi.org/10.1023/A:1024861725626
  16. Krishnamurti, G. S. R., G. Cielinski, P. M. Huang, and K. C. J. vanRees. 1998. Kinetics of cadmium release from soils as influenced by organic acids: Implementation in cadmium availability. J. Environ. Qual. 26, 271-277. https://doi.org/10.2134/jeq1997.00472425002600010038x
  17. Kulli, B., M. Balmer, R. Krebs, B. Lothenbach, G. Geiger, and R. Schulin. 1999. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J. Environ. Qual. 28, 1699-1705. https://doi.org/10.2134/jeq1999.00472425002800060002x
  18. Lombi, E., F. J. Zhao, S. J. Dunham, and S. P. McGrath. 2001. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919-1926. https://doi.org/10.2134/jeq2001.1919
  19. Mathys, W. 1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant 40, 130-136. https://doi.org/10.1111/j.1399-3054.1977.tb01509.x
  20. Mench, M., J. L. Morel, A. Guckert, and B. Gruillet. 1988. Metal binding with root exudates of low molecular weight. J. Soil Sci. 39, 521-527. https://doi.org/10.1111/j.1365-2389.1988.tb01236.x
  21. Merry, R. H., K. G. Tiller, and A. M. Alston. 1983. Accumulation of copper, lead and arsenic in some Australian orchard soils. Aust. J. Soil Res. 21, 549-561. https://doi.org/10.1071/SR9830549
  22. Sagner, S., R. Kneer, G. Wanner, J. P. Cosson, B. Deus-Neumann, and M. H. Zenk. 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminate. Phytochemistry 47, 339-347. https://doi.org/10.1016/S0031-9422(97)00593-1
  23. Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. 49, 643-668. https://doi.org/10.1146/annurev.arplant.49.1.643
  24. Shen, Z. G., X. D. Li, C. C. Wang, H. M. Chen, and H. Chua. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J. Environ. Qual. 31, 1893-1900. https://doi.org/10.2134/jeq2002.1893
  25. Stillman, M. J., C. F. Shaw, and K. T. Suzuki. 1992. metallothioneins, synthesis, structure and properties of metallothioneins, phytochelatins and metal-thiolate complexes, VCH, New York
  26. Wagner, G. J. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agro. 51, 173-212. https://doi.org/10.1016/S0065-2113(08)60593-3
  27. Wu, J., F. C. Hsu, and S. D. Cunningham. 1999. Chelate-assisted Pb phytoextraction: Pb availability, uptake and translocation constraints. Environ. Sci. Technol. 33, 1898-1904. https://doi.org/10.1021/es9809253