• 제목/요약/키워드: 히스토그램 모델링

검색결과 34건 처리시간 0.024초

가중 색 히스토그램과 지배적인 색의 영상 공간 분포를 이용한 내용기반 영상 검색 (Content-based Image Retrieval using Weighted Color Histogram and Spatial Distribution of Dominant Colors)

  • 박두식;한준희
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권3호
    • /
    • pp.285-297
    • /
    • 2001
  • 본 논문에서는 특정한 객체의 색 분포 모델링으로부터 얻어지는 가중 색 히스토그램과 지배적인 색의 영상공간 분포특성을 이용한 내용기반 영상 검색 방법을 제안한다. 특정한 객체의 예로 사람 얼굴을 선택했고, 그것의 색 분포를 u*-v* 색도 공간에서 모델링 했으며, 모델의 정규화된 부피를 균등 양자화된 색도 공간의 각 빈(bin)의 히스토그램 값에 대한 가중치로 결정하고, 결정된 가중치를 히스토그램 정합 과정에 적용하였다. 또한 색 히스토그램 값이 큰 특정한 수의 빈으로 정의되는 지배적인 색의 영상 공간 분포를 가중 색 히스토그램과 함께 유사성의 측정기준으로 사용하였다. 제안한 검색 방법을 500여개의 영상에 대해 실험한 결과 제안한 방법이 얼굴을 포함하는 영상을 질의로 주었을 때 얼굴을 포함하는 영상을 우선적으로 찾는데 효과적임을 확인하였다.

  • PDF

가우시안 혼합 모델 기반의 영상 히스토그램 평활화 (Image Histogram Equalization Based on Gaussian Mixture Model)

  • 전미진;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.748-760
    • /
    • 2012
  • 영상에서 밝기 분포가 특정한 범위에 밀집되어 있는 경우 영상에 포함된 특징을 구분하기가 어렵다. 이러한 문제를 해결하기 위해서 전역 히스토그램 평활화와 지역 히스토그램 평활화를 적용한다. 전역 히스토그램 평활화를 적용하는 경우 밝기 분포의 밀집 정도를 고려하지 않고 전체 히스토그램 정보를 사용하기 때문에 지나치게 밝아지거나 어두워질 수 있으며 부분적인 명암값을 개선시키는 것이 어렵다. 지역 히스토그램 평활화를 적용하는 경우 영상의 전체 밝기 분포를 고려하지 않고 지역적인 영상의 밝기 정보만을 사용하기 때문에 블록 간의 명암값의 차가 커져서 블록화 현상이 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 영상의 히스토그램의 영역에 가우시안 혼합 모델을 적용하여 모델링을 한 후, EM 알고리즘을 반복적으로 적용하여 각 영역의 범위를 결정한다. 그리고 분할된 영역별로 히스토그램 평활화를 적용하여 유사한 밝기값을 갖는 영역이 과도하게 평활화 되는 것을 방지하며 명암대비를 향상시킨다.

음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출 (Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling)

  • 장원철;서준상;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.17-24
    • /
    • 2014
  • 본 논문에서는 저속으로 회전하는 유도 전동기의 베어링 결함을 검출하기 위해 음향 방출 신호와 히스토그램 모델링을 이용하는 방법을 제안한다. 제안한 방법은 정규화된 결함 신호가 구성하는 히스토그램의 포락선을 모델링하여, 부분 상관 계수와 DET(Distance Evaluation Technique) 기법을 이용하여 결함 유형별 고유한 특징을 추출 및 선택한다. 추출된 특징을 SVR(Support Vector Regression) 분류기의 입력으로 사용하여 베어링의 내륜, 외륜 및 롤러 결함을 분류한다. 최적의 분류 성능을 위해 SVR 커널함수의 매개변수를 0.01에서 1.0까지 변화시키고, 특징 개수는 2에서 150까지 변화시키면서 실험한 결과, 0.64-0.65의 매개변수와 75개의 특징 개수에서 제안한 방법은 약 91%의 분류 성능을 보였고, 또한 기존의 결함 분류 알고리즘보다 높은 분류 성능을 보였다.

얼굴 칼라 히스토그램과 에지 정보를 이용한 얼굴 영역 검출 (Facial Region Detection Using Facial Color Histogram & information of Edge)

  • 이정봉;박장춘
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.592-594
    • /
    • 2002
  • 얼굴 영역 검출의 수행 방법으로 개선된 얼굴 칼라 히스토그램과 에지 정보를 결합한 검출 시스템을 제안한다. 배경이 복잡한 영상에서 사람의 얼굴 영역과 배경 영역이 얼굴 영역과 비슷한 칼라 분포를 가지는 물체를 포함하는 영상이더라도 강인한 추출이 가능하도록 하였다. 본 논문에서는 효율적인 얼굴 검출을 위하여 얼굴의 칼라 분포를 얼굴 칼라의 확률 히스토그램으로 모델링하고 에지 정보와 reconstruction에 의한 형태학적 필터링(morphological filtering)을 적용하여 얼굴 후보 영역을 검출한다. 검출된 후보 영역에서 얼굴 구성 요소간의 위치 관계를 이용하여 눈동자와 흰자위의 명도차 특성으로 눈 영역의 위치를 추정하고 상대적인 위치 관계로 입 영역을 추정하여 얼굴 구성 요소의 정보를 얻어서이 요소 정보가 존재하는 후보 영역들이 최종적으로 얼굴 영역으로 판단되어 검출된다. 제안한 방법을 여러 영상에 이용하여 좋은 결과를 얻을 수 있었다.

  • PDF

적응적 파라미터 추정을 통한 향상된 블록 기반 배경 모델링 (Improved Block-based Background Modeling Using Adaptive Parameter Estimation)

  • 김한준;이영현;송태엽;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.73-81
    • /
    • 2011
  • 본 논문에서는 모델 히스토그램 개수를 적응적으로 조절하는 블록기반의 배경 모델링 방법을 제안한다. 기존의 블록 기반의 배경 모델링 방법은 각 블록에 대한 모델 히스토그램의 개수를 고정한다. 따라서 조명변화와 움직이는 객체에 대해 오검출이 발생하는 문제가 있고 움직임이 없는 객체에 대해서는 검출이 되지 않는 문제가 있다. 또한 입력영상의 종류마다 달라질 수 있는 최적의 모델 히스토그램의 개수를 수동적으로 찾아야 하는 문제가 있다. 본 논문에서는 실험을 통해 엘리베이터 내에서 조명변화가 있고 객체가 움직이는 상황과 조명변화가 없고 객체가 정지해 있는 상황에 대해 기존의 방법과 성능을 비교하여 제안한 알고리즘의 효용성을 입증한다.

도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭 (Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area)

  • 염준호;김용일
    • 대한공간정보학회지
    • /
    • 제20권2호
    • /
    • pp.47-54
    • /
    • 2012
  • 도심지 모델링과 분석을 효과적으로 수행하기 위해서는 다른 시기나 다른 지역의 추가적인 고해상도 위성영상이 반드시 필요하다. 그러나 같은 지상 개체라 하더라도 서로 다른 영상에서 방사적인 불일치가 존재하며 이는 영상 처리와 분석의 정확도를 저하시키는 원인이 된다. 더욱이 도심지의 경우 건물, 수목, 교량, 기타 구조물 등 높이를 갖는 개체들은 영상 전체에 걸쳐 그림자를 발생시키며 이는 상대 방사 정규화의 질을 저하시킨다. 본 연구에서는 태양과 위성의 기하학적 위치 정보, 부가적인 수치 표고 모델이 없어도 적용이 가능한 단영상 기반의 그림자 추출기법을 적용하고 그림자의 영향을 배제한 선택적인 히스토그램 매칭 기법을 제안하였다. 건물의 에지 버퍼 영역에 대한 인접 정보와 분할을 통해 생성된 객체의 공간 및 분광인자를 이용하여 그림자를 추출한 후, 아스팔트 도로와 같이 그림자로 잘못 추출된 이상 객체를 제거하였다. 최종적으로 그림자 지역이 마스킹 된 Quickbird-2 다시기 영상을 이용하여 비그림자 지역만을 이용하여 선택적 히스토그램 매칭을 수행하였다.

영역 기반 물체 추적에서 색상 배치를 고려한 표적 모델링 (Target Modeling with Color Arrangement for Region-Based Object Tracking)

  • 김대환;이승준;고성제
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.1-10
    • /
    • 2012
  • 본 논문은 물체 추적에 적합한 새로운 형식의 히스토그램 모델을 제안한다. 제안하는 색상 히스토그램은 양자화 된 각 색상요소에 대해 픽셀의 개수뿐만 아니라 평균 위치 정보 그리고 평균 위치로부터 일정하게 떨어진 영역에 속하는 픽셀들의 색상평균값을 포함한다. 또한 제안하는 히스토그램간의 유사도를 나타내기 위하여 Bhattacharyya 거리를 기본으로 새로운 유사도 함수를 정의하고 mean shift 기법에 적용한다. 기존의 mean shift 기반 기법들과는 달리 본 논문에서 제안하는 알고리즘은 물체 주변 배경 영역에 물체와 비슷한 색상이 존재하더라도 강건한 물체 추적이 가능하다. 실험 결과는 기존 기법들과의 비교를 통하여 개선된 추적 결과를 보여준다.

야간 영상 감시를 위한 GMM기반의 배경 차분 (Background Subtraction based on GMM for Night-time Video Surveillance)

  • 여정연;이귀상
    • 스마트미디어저널
    • /
    • 제4권3호
    • /
    • pp.50-55
    • /
    • 2015
  • 본 논문에서는 야간 영상 감시(night-time video surveillance)에 특화된 GMM(Gausssian mixture model)기반의 배경 모델링(background modeling)을 이용한 배경 차분(background subtraction)방법을 제안한다. 야간 영상에서는 낮 영상에 비해 배경과 객체의 구분이 뚜렷하지 않아 매우 흡사한 픽셀 값들을 이용하여 배경을 분리해야 한다. 이러한 문제점을 해결하기 위해 전처리 단계에서 조정된 범위의 히스토그램 스트레칭을 이용하여 입력 픽셀 값을 배경 모델링에 이로운 픽셀 값으로 변경해준다. 조정된 픽셀 값을 이용하여 가장 이상적인 배경을 찾기 위해 픽셀 단위로 GMM기반의 배경 모델링 방법을 적용한다. GMM을 기반으로 한 배경모델링 방법에서는 새로운 픽셀 값이 입력되었을 때 어떤 가우시안에도 속하지 않는다면 가장 낮은 가중치를 가진 가우시안 분포를 제거함으로써 이전의 축적된 배경의 정보를 무시하는 결과를 낳게 된다. 따라서 본 논문에서는 낮은 가중치의 가우시안을 제거하는 대신 기존 가우시안의 평균과 입력된 픽셀 값의 차를 이용하여 새로운 평균에 적용함으로써 기존의 쌓여진 정보를 고려한다. 실험결과 제안된 배경 모델링 방법이 기존 방법의 이점을 유지하면서 야간 영상 감지에 특화된 배경 차분 결과를 보였다.

색상 정보를 이용한 실시간 얼굴 추적 시스템 구현 (Real Time Implementation of Face Tracking System Using Color Information)

  • 김영운;이형지;정재호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.151-154
    • /
    • 2001
  • 본 논문의 목적은 범용 USB 카메라 입력 영상으로부터 실시간으로 얼굴을 추적하는 시스템을 구현하는데 있다. 먼저 USB 카메라로부터 영상을 입력받은 후 2차원 RGB 컬러 모델링으로 추출한 살색 영역을 찾고 가로, 세로 프로젝선 정보를 이용하여 얼굴을 찾는다. 기존의 RGB 컬러 모델을 개선하여 빛에 강인한 모델링을 하였으며, 프로젝션 정보를 이용할 때 일어나는 에러를 최소화하기 위하여 누적 히스토그램 영역 결합 알고리즘을 제안하였다. 구현한 시스템은 움직임이 많은 영상에도 빠른 속도를 보였으며, 특히 영상의 움직임이적은 경우 카메라에서 영상을 보여 주는 것과 동시에 얼굴을 찾아내어, 연속적인 프레임을 처리할 수 있는 성능을 보였다.

  • PDF

잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출 (Valve Modeling and Model Extraction on 3D Point Cloud data)

  • 오기원;최강선
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.77-86
    • /
    • 2015
  • LIDAR를 이용해서 얻은 3차원 점군 데이터는 작은 물체를 추출하기에는 오차의 영향이 크기 때문에 작은 밸브를 자동으로 추출하는데 많은 어려움이 있다. 본 논문에서는 이러한 잡음이 있는 3차원 점군 데이터 사이에서 밸브의 위치 및 방향(Pose)의 정보를 얻는 방법을 제안한다. Pose를 얻기 위해서 밸브가 원환체 모양의 손잡이, 원통 모양의 Rib, 평면 모양의 중심축 평면인 기본 도형으로 이루어진 모델이라고 가정한다. 그리고 밸브의 중심 좌표에 대한 추가적인 입력을 받아서 밸브의 Pose를 추출한다. 중심점을 기준으로 거리에 따른 히스토그램을 생성하고, 히스토그램의 값에 따라 손잡이, Rib, 중심축 평면의 파라미터를 통계적인 방법으로 추출하여 최종 밸브의 Pose를 추출한다. 추출된 밸브의 Pose를 이용하여 3차원 점군 데이터에 밸브의 모형을 각 모양으로 복원한다.