• Title/Summary/Keyword: 히스토그램 모델링

Search Result 34, Processing Time 0.031 seconds

Content-based Image Retrieval using Weighted Color Histogram and Spatial Distribution of Dominant Colors (가중 색 히스토그램과 지배적인 색의 영상 공간 분포를 이용한 내용기반 영상 검색)

  • Park, Du-Sik;Han, Jun-Hui
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.3
    • /
    • pp.285-297
    • /
    • 2001
  • 본 논문에서는 특정한 객체의 색 분포 모델링으로부터 얻어지는 가중 색 히스토그램과 지배적인 색의 영상공간 분포특성을 이용한 내용기반 영상 검색 방법을 제안한다. 특정한 객체의 예로 사람 얼굴을 선택했고, 그것의 색 분포를 u*-v* 색도 공간에서 모델링 했으며, 모델의 정규화된 부피를 균등 양자화된 색도 공간의 각 빈(bin)의 히스토그램 값에 대한 가중치로 결정하고, 결정된 가중치를 히스토그램 정합 과정에 적용하였다. 또한 색 히스토그램 값이 큰 특정한 수의 빈으로 정의되는 지배적인 색의 영상 공간 분포를 가중 색 히스토그램과 함께 유사성의 측정기준으로 사용하였다. 제안한 검색 방법을 500여개의 영상에 대해 실험한 결과 제안한 방법이 얼굴을 포함하는 영상을 질의로 주었을 때 얼굴을 포함하는 영상을 우선적으로 찾는데 효과적임을 확인하였다.

  • PDF

Image Histogram Equalization Based on Gaussian Mixture Model (가우시안 혼합 모델 기반의 영상 히스토그램 평활화)

  • Jun, Mi-Jin;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.748-760
    • /
    • 2012
  • In case brightness distribution is concentrated in a region, it is difficult to classify the image features. To solve this problem, we apply global histogram equalization and local histogram equalization to images. In case of global histogram equalization, it can be too bright or dark because it doesn't consider the density of brightness distribution. Thus, it is difficult to enhance the local contrast in the images. In case of local histogram equalization, it can produce unexpected blocks in the images. In order to enhance the contrast in the images, this paper proposes a local histogram equalization based on the Gaussian Mixture Models(GMMs) in regions of histogram. Mean and variance parameters in each regions is updated EM-algorithm repeatedly and then ranges of equalization on each regions. The experimental results performed with image of various contrasts show that the proposed algorithm is better than the global histogram equalization.

Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling (음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출)

  • Jang, Won-Chul;Seo, Jun-Sang;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.

Facial Region Detection Using Facial Color Histogram & information of Edge (얼굴 칼라 히스토그램과 에지 정보를 이용한 얼굴 영역 검출)

  • 이정봉;박장춘
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.592-594
    • /
    • 2002
  • 얼굴 영역 검출의 수행 방법으로 개선된 얼굴 칼라 히스토그램과 에지 정보를 결합한 검출 시스템을 제안한다. 배경이 복잡한 영상에서 사람의 얼굴 영역과 배경 영역이 얼굴 영역과 비슷한 칼라 분포를 가지는 물체를 포함하는 영상이더라도 강인한 추출이 가능하도록 하였다. 본 논문에서는 효율적인 얼굴 검출을 위하여 얼굴의 칼라 분포를 얼굴 칼라의 확률 히스토그램으로 모델링하고 에지 정보와 reconstruction에 의한 형태학적 필터링(morphological filtering)을 적용하여 얼굴 후보 영역을 검출한다. 검출된 후보 영역에서 얼굴 구성 요소간의 위치 관계를 이용하여 눈동자와 흰자위의 명도차 특성으로 눈 영역의 위치를 추정하고 상대적인 위치 관계로 입 영역을 추정하여 얼굴 구성 요소의 정보를 얻어서이 요소 정보가 존재하는 후보 영역들이 최종적으로 얼굴 영역으로 판단되어 검출된다. 제안한 방법을 여러 영상에 이용하여 좋은 결과를 얻을 수 있었다.

  • PDF

Improved Block-based Background Modeling Using Adaptive Parameter Estimation (적응적 파라미터 추정을 통한 향상된 블록 기반 배경 모델링)

  • Kim, Hanj-Jun;Lee, Young-Hyun;Song, Tae-Yup;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.73-81
    • /
    • 2011
  • In this paper, an improved block-based background modeling technique using adaptive parameter estimation that judiciously adjusts the number of model histograms at each frame sequence is proposed. The conventional block-based background modeling method has a fixed number of background model histograms, resulting to false negatives when the image sequence has either rapid illumination changes or swiftly moving objects, and to false positives with motionless objects. In addition, the number of optimal model histogram that changes each type of input image must have found manually. We demonstrate the proposed method is promising through representative performance evaluations including the background modeling in an elevator environment that may have situations with rapid illumination changes, moving objects, and motionless objects.

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

Target Modeling with Color Arrangement for Region-Based Object Tracking (영역 기반 물체 추적에서 색상 배치를 고려한 표적 모델링)

  • Kim, Dae-Hwan;Lee, Seung-Jun;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, we propose a new class of color histogram model suitable for object tracking. In addition to the pixel count, each bin of the proposed model also contains the spatial mean and the average value of the pixels located at a certain distance from the mean location of the bin. Using the proposed color histogram model, we derive a mean shift procedure using the modified Bhattacharyya distance. Unlike most mean shift based methods, our algorithm performs well even when the object being tracked shares similar colors with the background. Experimental results demonstrate improved tracking performance over existing methods.

Background Subtraction based on GMM for Night-time Video Surveillance (야간 영상 감시를 위한 GMM기반의 배경 차분)

  • Yeo, Jung Yeon;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.4 no.3
    • /
    • pp.50-55
    • /
    • 2015
  • In this paper, we present background modeling method based on Gaussian mixture model to subtract background for night-time video surveillance. In night-time video, it is hard work to distinguish the object from the background because a background pixel is similar to a object pixel. To solve this problem, we change the pixel of input frame to more advantageous value to make the Gaussian mixture model using scaled histogram stretching in preprocessing step. Using scaled pixel value of input frame, we then exploit GMM to find the ideal background pixelwisely. In case that the pixel of next frame is not included in any Gaussian, the matching test in old GMM method ignores the information of stored background by eliminating the Gaussian distribution with low weight. Therefore we consider the stacked data by applying the difference between the old mean and new pixel intensity to new mean instead of removing the Gaussian with low weight. Some experiments demonstrate that the proposed background modeling method shows the superiority of our algorithm effectively.

Real Time Implementation of Face Tracking System Using Color Information (색상 정보를 이용한 실시간 얼굴 추적 시스템 구현)

  • 김영운;이형지;정재호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.151-154
    • /
    • 2001
  • 본 논문의 목적은 범용 USB 카메라 입력 영상으로부터 실시간으로 얼굴을 추적하는 시스템을 구현하는데 있다. 먼저 USB 카메라로부터 영상을 입력받은 후 2차원 RGB 컬러 모델링으로 추출한 살색 영역을 찾고 가로, 세로 프로젝선 정보를 이용하여 얼굴을 찾는다. 기존의 RGB 컬러 모델을 개선하여 빛에 강인한 모델링을 하였으며, 프로젝션 정보를 이용할 때 일어나는 에러를 최소화하기 위하여 누적 히스토그램 영역 결합 알고리즘을 제안하였다. 구현한 시스템은 움직임이 많은 영상에도 빠른 속도를 보였으며, 특히 영상의 움직임이적은 경우 카메라에서 영상을 보여 주는 것과 동시에 얼굴을 찾아내어, 연속적인 프레임을 처리할 수 있는 성능을 보였다.

  • PDF

Valve Modeling and Model Extraction on 3D Point Cloud data (잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출)

  • Oh, Ki Won;Choi, Kang Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.77-86
    • /
    • 2015
  • It is difficult to extract small valve automatically in noisy 3D point cloud obtained from LIDAR because small object is affected by noise considerably. In this paper, we assume that the valve is a complex model consisting of torus, cylinder and plane represents handle, rib and center plane to extract a pose of the valve. And to extract the pose, we received additional input: center of the valve. We generated histogram of distance between the center and each points of point cloud, and obtain pose of valve by extracting parameters of handle, rib and center plane. Finally, the valve is reconstructed.