• Title/Summary/Keyword: 히스토그램 기반 유사도 계산

Search Result 35, Processing Time 0.026 seconds

Content-Based Image Retrieval using Histogram Area Calculation (히스토그램 영역계산을 이용한 내용기반 영상검색)

  • Park, Min-Sheik;Yoo, Gi-Hyoung;Kwak, Hoon-Sung
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.265-270
    • /
    • 2005
  • Histogram is very sensitive in lighting because of feature between color space. When it has intensity of moved light, It may be possibility that similarity drop down, So In this paper, introduce new image retrieval method that calls HAC (Histogram Area Calculation). This method divides area of Histogram by a few area and calculate areas. The proposed method is to calculate area of Histogram and compare similarity based on feature that histogram has presently. Performance of our proposed method was verified more excellent than other Conventional method and Merged Color Histogram.

  • PDF

Content-Based Image Retrieval using Histogram Area Calculation (히스토그램 영역계산을 이용한 내용기반 영상검색)

  • Jang, Se-Young;Park, Jung-Man;Han, Deuk-Su;Yoo, Gi-Hyoung;Yoo, Kang-Soo;Kwak, Hoon-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.167-170
    • /
    • 2005
  • 히스토그램은 컬러 공간의 특징 때문에 조명에 매우 민감하며, 이동된 빛의 강도를 가지고 있을 때, 유사성을 떨어뜨릴 가능성이 커지기 때문에, 본 논문에서는 히스토그램의 영역을 몇 개의 영역으로, 나눠, 그 영역들을 계산하는 HAC(Histogram Area Calculation)라 불리는 새로운 검색 방법을 소개한다. 제안한 방식은 현재 히스토그램이 가지고 있는 특성에 기반 하여, 히스토그램의 영역을 계산하고, 유사사성을 matching 시킴으로써, 명암도 변화에 대해서 기존의 다른 전통적인 히스토그램 방법이나, 병합된 히스토그램 방법보다 제안한 방식의 성능이 훨씬 뛰어나다는 것을 보여준다.

  • PDF

Similarity between Color Distributions based on Different Color Sets (상이한 칼라집합 기반의 칼라분포간 유사도)

  • 김동균;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.141-144
    • /
    • 2002
  • 영상에서의 칼라분포 정보는 영상간의 유사성을 표현하는데 매우 유용하여 내용기반 영상검색분야에서 기본적으로 사용하고 있다. 이때, 영상 데이터베이스에서의 각 영상에 대하여 동일한 방식으로 (비)균일하게 양자화하여 표현한 칼라 히스토그램이 주로 사용되고 있다. 그러나, 전체영상에 대하여 동일한 개수의 고정된 양자화를 통해 칼라분포 정보를 표현하는데, 여러 가지 문제점과 성능 차이가 있어 다양한 해결 방안이 연구되고 있다. 본 논문에서는, 적응적 양자화 방법으로 각 영상의 칼라분포 정보를 표현하되, 상이한 양자화 칼라간의 유사도를 정의하여 칼라히스토그램 인터섹션 방법과 유사하게 영상간의 칼라분포 유사도를 계산하는 방법을 제안한다. 양자화 칼라간의 유사도는 거리에 반비례하면서 두 양자화 칼라의 작은 빈도값에 비례하도록 정의하였다. 영상간의 칼라분포 유사도는 칼라 히스토그램 인터섹션 방법을 생산자-소비자 모델로 해석하여 구하는 방법을 제안한다. 제안한 방법에 의해 기존의 칼라 히스토그램 인터섹션 방법보다 향상된 결과를 얻을 수 있음을 실험을 통해 확인하였다.

  • PDF

Diffusion Distance Based Disparity Search Range Estimation for Stereo Video (확산 거리 기반의 스테레오 비디오의 변이 탐색 범위 추정 방법)

  • Li, Ruei-Hung;Ham, Bumsub;Kim, Bingjo;Kang, Minsung;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.87-90
    • /
    • 2012
  • 본 논문에서는 깊이 변화에 강인한 스테레오 비디오의 변이 탐색 범위 추정 방법을 제안한다. 정확한 스테레오 비디오의 변이 탐색 범위는 3D 영상 분야에서 다양한 응용으로 사용되는 변이 지도를 보다 정확하게 추정하는데 도움이 된다. 기존의 변이 탐색 범위 추정 방법은 인접한 프레임 간의 변이 히스토그램의 유사도를 이용함으로써 보다 안정적인 변이 탐색 범위를 추정할 수 있었지만, 시간의 흐름에 따라 깊이가 변하는 부분에서는 상당히 취약한 문제점을 가지고 있다. 이에 본 논문에서는 기존 방법의 이러한 문제점을 개선한 새로운 방법을 제안한다. 제안하는 방법은 변이 히스토그램의 유사도뿐만 아니라 프레임 간의 시간적 유사도를 고려하며, 비디오의 장면 전환에 의한 급격한 깊이 변화 또한 고려한다. 이에 추가적으로 변이 히스토그램의 유사도를 계산하기 위해 기존의 방법과는 달리 히스토그램 확산 거리를 이용하였으며, 서로 다른 개수의 대응점을 가지고 있는 프레임간의 변이 히스토그램이 대응점의 개수에 영향을 받지 않고 균일한 중요도를 갖도록 하였다. 실험 결과로 기존 방법과 제안한 방법의 변이 탐색 범위 추정 결과를 비교하였으며, 비교한 결과는 제안한 방법이 기존 방법에 비해 스테레오 비디오의 깊이 변화에 강인함을 보여준다.

  • PDF

A New Image Search and Retrieval System using Color Features (컬러 특성에 의한 영상 검색 알고리즘)

  • Lee, Hyo-Jong;Lee, Do-Kyun;Song, Myoung-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.695-698
    • /
    • 2000
  • 본 논문에서는 이미지 데이터 컬러 속성을 기반으로 한 영상 검색 방법을 제안한다. 두 이미지 사이의 유사성을 측정하기 위하여 컬러 히스토그램의 분포 특성을 이미지 데이터베이스 영상과질의 영상에서 계산하여 유사도를 결정하도록 설계하였다. 두 영상의 유사도를 측정하기 위해 두영상의 R, G, B 히스토그램에 대해서 같은 값에 대한 빈도 수의 차를 거리로 측정한 후, 구해진 거리의 차를 비교한 방법과 히스토그램의 분포 곡선을 이루는 방정식을 구한 수 있도록 곡선 정합을 한 후에 두 영상의 컬러 특징 속성에 관한 특징 값의 추출을 위해서 다항식 보간법에 의한 방정식을 이용한 방법을 소개한다. 공간 데이터베이스 시스템에서 질의에 대한 효율적인 처리를 위해 R-Tree와 최대 점을 이용하여 영상을 검색한다.

  • PDF

A Study on Weighted Hierarchical Color Clustering Using Color Distribution (컬러 분포를 가중치로 이용한 컬러 클러스터링에 관한 연구)

  • 윤위영;범수균;탁우현;이종환;김경석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.250-252
    • /
    • 1998
  • 내용기반 이미지 검색(Content-based image retrieval)에서 컬러 특징을 표현하기 위해 컬러 히스토그램이 많이 이용되고 있다. 하지만 히스토그램의 고차원적인 성질 때문에 색인구조를 사용한 효율적인 검색이 어렵고, 유사도 계산 단계에서 비용이 많이 든다. 이점을 개선하기 위해서 이미지의 컬러 정보 손실을 최소화하면서 히스토그램의 차원을 낮추는 컬러 클러스터링 방법이 제안되었다. 이 논문은 이미지 검색의 응용 분야에 따른 이미지 데이터의 컬러 분포 특성을 이용한 컬러 클러스터링 방법을 제안한다. 컬러 분포를 가중치로 이용한 계층적 컬러 클러스터링 방법에 대해 알아보고, 두 단계 컬러 히스토그램을 이용한 이미지 검색에 적용하여 컬러 정보 유지 능력을 실험해 본다.

Image Tile Average RGB Method for Image Content-Based Retrieval (이미지 내용 기반 검색을 위한 이미지 타일 평균 RGB 방법)

  • 한정운;김병곤;이재호;임해철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.296-298
    • /
    • 1999
  • 컬러 히스토그램은 멀티미디어 이미지 데이터의 특성을 표현하기 위하여 널이 이용되어 왔다. 그러나 컬러 히스토그램을 고차원으로 설정할 경우 색인 구조에 효율적이지 못할 뿐만 아니라 유사도 계산에서도 고비용이 요구된다. 이러한 단점을 보완하기 위해 히스트그램의 차원을 줄이는 여러 방법이 제시되어 왔으나 이미지의 색상정보 손실을 피할 수 없으며, 이미지의 전체 히스토그램으로는 이미지의 레이아웃을 고려할 수 없기 때문에 필터링을 통한 후보 선정 시 상이한 이미지가 선택되어지는 문제점을 지닌다. 본 논문에서는 이미지를 일정한 크기의 타일로 분할한 이미지 타일 평균 RGB 방법을 제안하였으며, 실험을 통하여 제안한 방법의 성능을 평가하였다.

  • PDF

Detection of Candidate Areas for Automatic Identification of Scirtothrips Dorsalis (볼록총채벌레 자동판정을 위한 후보영역 검출)

  • Moon, Chang Bae;Kim, Byeong Man;Yi, Jong Yeol;Hyun, Jae Wook;Yi, Pyoung Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.6
    • /
    • pp.51-58
    • /
    • 2012
  • Scirtothrips Dorsalis (Thysanoptera: Thripidae) recently has been recognized as a major source of the pest damage in the citrus fruit orchards. So its arrival has been predicted periodically but it is difficult to identify adults of the pest with the naked eyes because of their size smaller than the 0.8mm. In this paper, we propose a method to detect candidate areas for automatic identification of Scirtothrips Dorsalis on forecasting traps. The proposed method uses a histogram-based template matching where the composite image synthesized with the gray-scale image and the gradient image is used. In our experiments, images are acquired by the optical microscopy with 50 magnifications. To show the usefulness of the proposed method, it is compared with the method we previously suggested. Also, the performances when the proposed method is applied to noise-reduced images and gradient images are examined. The experimental results show that the proposed method is approximately 14.42% better than our previous method, 41.63% higher than the case that the noise-reduced image is used, and 21.17% higher than the case that the gradient image is used.

Histogram-based road border line extractor for road extraction from satellite imagery (위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자)

  • Lee, Dong-Hoon;Kim, Jong-Hwa;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.28-34
    • /
    • 2007
  • A histogram-based road border line extractor is proposed for an efficient road extraction from the high-resolution satellite imagery. The road border lines are extracted from an edge strength map based on the directional histogram difference between the road and the non-road region. The straight and the curved roads are extracted hierarchically from the edge strength map of the original image and the segmented road cluster images, and the road network is constructed based on the connectivity. Unlike the conventional approaches based on the spectral similarity, the proposed road extraction method is more robust to noise because it extracts roads based on the histogram, and is able to extract both the location and the width of roads. In addition, the proposed method can extract roads with various spectral characteristics by identifying the road clusters automatically. Experimental results on IKONOS multi-spectral satellite imagery with high spatial resolution show that the proposed method can extract the straight and the curved roads as well as the accurate road border lines.

Cause Diagnosis Method of Semiconductor Defects using Block-based Clustering and Histogram x2 Distance (블록 기반 클러스터링과 히스토그램 카이 제곱 거리를 이용한 반도체 결함 원인 진단 기법)

  • Lee, Young-Joo;Lee, Jeong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1149-1155
    • /
    • 2012
  • In this paper, we propose cause diagnosis method of semiconductor defects from semiconductor industrial images. Our method constructs feature database (DB) of defect images. Then, defect and input images are subdivided by uniform block. And the block similarity is measured using histogram kai-square distance after color histogram calculation. Then, searched blocks in each image are merged into connected objects using clustering. Finally, the most similar defect image from feature DB is searched with the defect cause by measuring cluster similarity based on features of each cluster. Our method was validated by calculating the search accuracy of n output images having high similarity. With n = 1, 2, 3, the search accuracy was measured to be 100% regardless of defect categories. Our method could be used for the industrial applications.