• 제목/요약/키워드: 희소성표현

검색결과 16건 처리시간 0.024초

희소성 표현 기반 객체 추적에서의 표류 처리 (Drift Handling in Object Tracking by Sparse Representations)

  • 여정연;이귀상
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.88-94
    • /
    • 2016
  • 본 논문에서는 희소성 표현을 기반으로 하는 객체 추적 방법에 있어서 객체 표류 현상을 처리하기 위한 새로운 방법을 제시한다. 그중에서도 APG-L1 (accelerated proximal gradient L1) 방법은 희소성 표현이란 객체의 외형을 표현하기 위한 목표 템플릿(target template)과 배경이나 폐색(occlusion)과 같은 객체 이외의 부분을 대체하기 위한 기본 템플릿(trivial template)를 이용하여 입력 영상을 표현하는 방법이다. 또한 어파인 변환행렬을 이용한 particle filtering 이 적용되어 객체의 위치를 찾고 APG 방법을 사용하여 희소성기반의 L1-norm을 최소화한다. 본 논문에서는 객체추적의 표류현상을 방지하기 위하여 기본 템플릿의 계수를 활용하여 배경을 가진 객체가 채택되는 현상을 방지하는 방법을 제시한다. 다양한 영상에 적용하여 제안하는 방법을 실험한 결과, 기존의 방법들과 비교하여 높은 성과를 보인다.

하이퍼그래프 희소성에 따른 하이퍼그래프 임베딩 방법 성능 평가 (Evaluating the Performance of Hypergraph Embedding Methods According to Hypergraph Sparsity)

  • 정소빈;강윤석;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.641-643
    • /
    • 2024
  • 실세계에서는 두개 이상의 객체들이 서로 관계를 맺고있다. 단 두 객체 간의 관계만 표현하는 그래프와는 달리 여러 객체들 간의 관계를 표현하는 하이퍼그래프는 그룹 상호작용을 잘 표현할 수 있다. 이러한 강점으로 하이퍼그래프를 활용한 응용들이 많이 제안되고 있다. 하이퍼그래프 임베딩은 하이퍼그래프의 구조를 이용하여 노드를 저차원 벡터로 표현하는 방법이다. 이렇게 표현된 벡터들은 노드 분류, 커뮤니티 탐지, 링크예측 등 광범위한 응용에 활용된다. 하지만 하이퍼그래프는 그래프보다 희소성 문제가 훨씬 더 심해 데이터 셋의 희소성이 하이퍼그래프 임베딩 방법의 성능에 큰 영향을 미칠 수 있다. 따라서, 본 논문에서는 희소성에 따른 하이퍼그래프 임베딩 방법들의 성능을 분석하고자 한다. 우리는 8 개의 실세계 데이터셋을 이용한 실험을 통해 데이터가 희소할수록 하이퍼그래프 임베딩 방법들의 성능이 감소하는 것을 확인하였다.

말뭉치 자원 희소성에 따른 통계적 수지 신호 번역 문제의 해결 (Addressing Low-Resource Problems in Statistical Machine Translation of Manual Signals in Sign Language)

  • 박한철;김정호;박종철
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.163-170
    • /
    • 2017
  • 통계적 기계 번역을 이용한 구어-수화 번역 연구가 활발해짐에도 불구하고 수화 말뭉치의 자원 희소성 문제는 해결되지 않고 있다. 본 연구는 수화 번역의 첫 번째 단계로써 통계적 기계 번역을 이용한 구어-수지 신호 번역에서 말뭉치 자원 희소성으로부터 기인하는 문제점들을 해결할 수 있는 세 가지 전처리 방법을 제안한다. 본 연구에서 제안하는 방법은 1) 구어 문장의 패러프레이징을 통한 말뭉치 확장 방법, 2) 구어 단어의 표제어화를 통한 개별 어휘 출현 빈도 증가 및 구어 표현의 번역 가능성을 향상시키는 방법, 그리고 3) 수지 표현으로 전사되지 않는 구어의 기능어 제거를 통한 구어-수지 표현 간 문장 성분을 일치시키는 방법이다. 서로 다른 특징을 지닌 영어-미국 수화 병렬 말뭉치들을 이용한 실험에서 각 방법론들이 단독으로 쓰일 때와 조합되어 함께 사용되었을 때 모두 말뭉치의 종류와 관계없이 번역 성능을 개선시킬 수 있다는 것을 확인할 수 있었다.

개체명 인식을 이용한 소셜 미디어에서의 약물 부작용 표현 추출 및 분류 (Detecting and classification ADRs using Named Entity Recognition on social media)

  • 정현정;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.443-446
    • /
    • 2021
  • 의약품에 대한 안전성 정보 수집과 관리는 온라인, 오프라인을 통해 약물 이상 사례를 보고받는 형태로 진행되고 있다. 하지만 소비자들의 자발적인 참여로 이루어지므로 실제 발생하는 약물 부작용보다 데이터가 현저히 적다는 단점이 존재한다. 본 논문에서는 약물 이상 데이터 희소성 문제를 해결 할 수 있도록 소셜 미디어에서 약물 부작용 표현을 찾을 수 있도록 하였다. 소셜 미디어의 경우에는 표준 약물 부작용 용어를 사용하기보다는 일반인들이 자연어로 표현한 경우가 많으므로 개체명 인식 기법을 이용해 부작용을 추출할 수 있는 모델을 개발하였다. 또한 추출된 부작용 표현을 표준용어로 분류할 수 있는 모델을 제시하였다. 실험 결과 제안한 두 가지 모델은 0.9 이상의 정확도를 얻을 수 있었으며, 일반 사용자들이 자연어로 표현한 약물 부작용 표현을 효과적으로 찾아내고 표준 부작용 용어로 매핑할 수 있음을 보여준다.

도심 영상에서의 비음수행렬분해를 이용한 차량 인식 (Vehicle Recognition using NMF in Urban Scene)

  • 반재민;이병래;강현철
    • 한국통신학회논문지
    • /
    • 제37권7C호
    • /
    • pp.554-564
    • /
    • 2012
  • 차량인식은 차량 후보영역 검출단계와 검출된 후보 영역에서 특징을 기반으로 차량을 검증하는 차량 검증단계로 나누어진다. 선형 변환 방식의 특징은 차원 감소 효과와 통계적인 특징을 지니게 되어, 이동이나 회전에 강인한 특성을 갖는다. 선형 변환 방식 중 비음수행렬분해(Non-negative Matrix Factorization, NMF)는 부분 기반 표현 방식으로 차량의 국소적인 특징을 기저벡터로 사용하여 희소성을 갖는 특징을 추출할 수 있기 때문에 도심영상에서 발생하는 차폐 영역에 따른 인식률 저하를 방지할 수 있다. 본 논문에서는 차량 인식에 적합한 NMF 특징 추출 방법을 제안하고, 인식률을 검증하였다. 또한 희소성 제약 조건을 이용하여 기저 벡터에 희소성을 가지는 SNMF(Sparse NMF)와 LVQ2(Learning Vector Quantization) 신경 회로망을 결합하여 차폐 영역에 대한 차량 인식 효율을 기존의 NMF를 이용한 방법과 비교하였다. NMF를 이용하는 특징은 차량이 혼재되어 차폐 영역이 빈번히 발생하는 도심에서도 강건한 특징임을 보였다.

공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘 (Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification)

  • 홍성삼;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2019
  • 빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.

ROMP를 이용한 희소 표현 방식 얼굴 인식 방법론 (Face Recognition via Sparse Representation using the ROMP Method)

  • 안정호;최권택
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권2호
    • /
    • pp.347-356
    • /
    • 2017
  • 희소 표현을 이용한 얼굴 인식 방법론은 강인성이 입증된 우수한 얼굴 인식 방법으로 알려져 있다. 이 방법론의 단점은 $L_1$-노름 최적화 문제를 통해 희소해를 구하는 과정에서 많은 시간이 소요되어 실시간 응용 분야에 적합하지 않다는 것이다. 통상적인 $L_2$-노름 최적화 문제를 통해 얻어진 희소해는 희소성이 결여되고 정확도가 떨어져서 희소 표현을 이용한 인식 방법론에는 사용되고 있지 않다. 우리는 본 논문에서는 탐욕적인 방식으로 $L_2$-노름 최적화 문제를 푸는 ROMP 방식을 도입해 희소해를 구하는 방법을 제안하고, 실험을 통해 제안한 방식이 정확도에서 기존 방식과 유사하며 속도는 60배 이상 빠름을 보였다. 또한, 희소 표현기반인식 방법론으로 희소해의 분포만을 고려하여 분류하는 단순한 방식인 C-SCI 방법론을 제안하였다. 이 방법론은 테스트 데이터를 복원하는 기존 방식과 성능 면에서는 유사하나 속도 면에서는 약 5배 빠름을 실험적으로 입증하였고, 이론적인 복잡도 분석 결과도 제시하였다.

그래프 기반 협동적 여과를 이용한 음악 추천 시스템 (A Music Recommendation System by Using Graph-based Collaborative Filtering)

  • 김형일;이진석;이정현;조진관;김경섭;김준태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.51-54
    • /
    • 2006
  • 본 논문에서는 각 사용자들의 취향에 맞는 음악을 추천하는 개인화된 음악 추천 시스템을 소개한다. 추천 시스템이란 사용자의 선호도를 분석하고 아이템들에 대한 사용자의 선호도를 예측하여 영화, 음악, 기사, 책, 웹 페이지 등과 같은 아이템들을 추천하는 시스템을 말한다. 추천 시스템들에서 가장 많이 사용하고 있는 협동적 추천 방식은 선호도 데이터를 기반으로 유사한 사용자들을 찾고, 유사 사용자들의 선호도를 기반으로 예측을 수행하는 것으로서, 여러 장점들이 있으나 희소성(sparsity) 문제와 확장성(scalability) 문제에 대해 취약점을 가지고 있다. 아이템들의 전체 수에 비해 매우 적은 수의 아이템 선호도 데이터만 존재한다면 사용자들의 유사도를 계산하기가 어려우며, 또한 사용자의 수가 늘어날수록 유사도 계산에 걸리는 시간이 급격하게 늘어남으로써 수백만 사용자가 있는 웹 사이트 등에서 실시간 추천을 수행하기 어렵다. 본 논문에서 소개하는 음악 추천 시스템은 이러한 문제점들을 해결하기 위해 그래프 기반 협동적 여과 기법을 사용한다. 그래프 기반 협동적 여과 기법은 기존의 협동적 여과 기법들과 달리 아이템들 사이의 연관관계를 그래프 모델로 표현하고 저장함으로써 묵시적인 선호도 정보들을 누적하여 희소성 문제를 해결하고, 추천 아이템을 선정하는데 필요한 계산 시간을 크게 단축하여 대규모 데이터에서 실시간 추천을 가능하게 한다는 장점이 있다.

  • PDF

하이퍼엣지 예측 작업에서 네거티브 샘플링 기술의 성능 분석 (Performance Evaluation of Negative Sampling Methods in a Hyperedge Prediction Task)

  • 이다은;유송경;고윤용;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.527-530
    • /
    • 2024
  • 하이퍼그래프(hypergraph)는 실세계의 여러 객체가 함께 형성하는 복잡한 그룹 관계를 하이퍼엣지(hyperedge)로 정보 손실 없이 모델링할 수 있는 새로운 데이터 구조이다. 하이퍼엣지 예측(hyperedge prediction task)이란 하이퍼그래프로 표현된 실세계 네트워크에서 아직 관찰되지 않은 그룹관계 혹은 미래에 발생할 가능성이 높은 관계를 예측하는 것으로, 단백질 상호작용 분석(PPI), 추천시스템, 소셜 네트워크 분석 등 다양한 응용 분야에서 활용된다. 그러나, 하이퍼엣지 예측은 심각한 데이터 희소성 문제로 정확한 예측이 어렵다는 근본적인 한계를 지닌다. 이러한 한계를 완화하기 위해 다양한 네거티브 샘플링(negative sampling) 기술이 활용될 수 있는데, 아직까지 각 샘플링 기술이 하이퍼엣지 예측 정확도에 미치는 효과에 대해 충분히 연구되지 않았다. 본 논문에서는 하이퍼엣지 예측에 활용되는 다양한 네거티브 샘플링 방법의 효과를 분석한다. 실험 결과를 통해, 네거티브 샘플링 기법과 포지티브와 네거티브 하이퍼엣지 수의 비율에 따른 정확도 변화 양상을 분석한다.

희소성 스펙트럼 피팅 도래각 추정 알고리즘의 제한조건에 포함된 상수 결정법 (Determination of Parameter Value in Constraint of Sparse Spectrum Fitting DOA Estimation Algorithm)

  • 조윤성;백지웅;이준호
    • 한국통신학회논문지
    • /
    • 제41권8호
    • /
    • pp.917-920
    • /
    • 2016
  • 전통적 도래각 추정기법[1]과 별개로 2004년 이후 입사신호의 입사방향은 공간 영역에서 희소도(sparsity)를 가짐을 이용한 도래각 추정 기법이 제안되었다. 압축센싱 기반 도래각 추정 알고리즘인 SpSF 알고리즘에 이용되는 비용함수는 비선형 다변수 최적화문제이다. 적절한 변환을 통하여 해당 비용함수는 볼록 최적화 (convex optimization) 문제로 표현할 수 있다. 볼록 최적화 문제는 제한조건이 있는 최적화 문제이며 제한조건에 포함되는 상수를 지정해야 한다. 본 연구에서는 제한조건에 포함되는 사용자지정 상수값 결정법을 제안한다. 잡음의 실수부와 허수부가 서로 독립인 평균 0인 정규분포를 따름을 이용하여 제한조건에 포함되는 행렬의 Frobenius norm의 평균을 유도할 수 있으며, 이를 이용하여 제한조건에 포함되는 상수를 결정할 수 있다. 제안된 방법에 의해 결정된 상수를 이용한 SpSF 알고리즘이 실제로 동작함을 보였다.