• Title/Summary/Keyword: 흡필드 모델

Search Result 5, Processing Time 0.019 seconds

인공 신경망을 이용한 구조 최적화 기법

  • 양영순;문상훈
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.39-42
    • /
    • 1994
  • 인공 신경망은 빠른 속도와 안정성 등의 많은 장점을 갖고 있기 때문에 최근 들어서 여러 분야 에서 그 응용이 활발히 연구되고 있다. 인공 신경망의 한 모델인 홉필드 네트워크는 네트워크의 에너지를 최소화시키는 방향으로 네트워크의 상태를 바꾸며, 최소 에너지 상태에서 안정 상태를 유지하는 특징을 갖고 있다. 이러한 흡필드 네트워크의 특징은 흡필드 네트워크를 최적화 문 제에 적용시킬 수 있는 가능성을 제시하고 있다. 기존의 최적화 기법은 기본적으로 국부적인 탐색 기법을 사용하기 때문에, 전역적 최적해를 구하기 위해 초기점을 달리하여 여러번 계산을 수행하여 그 중 가장 좋은 결과를 취하는 방법을 사용하여야 한다. 따라서 이러한 방법은 초 기점의 선택이 결과에 큰 영향을 미치게 되는데, 설계 변수가 많고 제한 조건이 복잡할 경우 초기점 선택에 어려움이 따른다. 본 연구에서는 흡필드 네트워크와 시뮬레이티드 어닐링을 결 합하여 전역적 최적해를 찾는 기법으로서 뉴드-옵티마이저 모델을 제시하고 있다.

  • PDF

A Study on the Implementation of Hopfield Model using Array Processor (어레이 프로세서를 이용한 홉필드 모델의 구현에 관한 연구)

  • 홍봉화;이지영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.94-100
    • /
    • 1999
  • This paper concerns the implementation of a digital neural network which performs the high speed operation of Hopfield model's arithmetic operation. It is also designed to use a look-up table and produce floating point arithmetic of nonlinear function with high speed operation. The arithmetic processing of Hopfleld is able to describe the matrix-vector operation, which is adaptable to design the array processor because of its recursive and iterative operation .The proposed method is expected to be applied to the field of real neural networks because of the realization of the current VLSI techniques.

  • PDF

A Neural Network Algorithm for Adaptively Assigning Channels in Mobile Cellular Systems (신경회로망을 이용한 셀룰러 시스템의 적응적인 채널할당에 관한 연구)

  • 권준혁;마중수;차동완
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.284-292
    • /
    • 1994
  • In mobile cellular systems, the ever-increasing demand for service continuously necessitaties cell splitting or assignning additional channels to certain base stations. But for most of the presently operative systems, the channels that are already used at some existing base stations are strongly desired not to be changed, giving rise to the Problem of Adaptively Assigning Channels(PAAC). In this paper, we show that the problem can efficiently be solved using the neural network algorithm by exploiting the special feature of the PAAC.

  • PDF

Real Time AOA Estimation Using Neural Network combined with Array Antennas (어레이 안테나와 결합된 신경망모델에 의한 실시간 도래방향 추정 알고리즘에 관한 연구)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.87-91
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas. However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. The other problem of MUSIC and ESRPIT is to require calibrated antennas with uniform features, and are sensitive to the manufacturing facult and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected hopfield neural model. Computer simulations show the validity of the proposed algorithm. The proposed method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

  • PDF

Real Time AOA Estimation Using Analog Neural Network Model (아날로그 신경망 모델을 이용한 실시간 도래방향 추정 알고리즘의 개발)

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.465-469
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas, However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. the other problem of MUSIC and ESPRIT is to require calibrated antennas with uniform features, and are sensitive ti the manufacturing fault and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those methods require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected Hopfield neural model. Computer simulations show the validity of the proposed algorithm. It follows that the proposed method yields better AOA estimates than MUSIC. Moreover, out method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.