• Title/Summary/Keyword: 흡착반응

Search Result 1,406, Processing Time 0.026 seconds

Oxidation Reaction of CO and $C_2H_4$ on Zinc Oxide (산화아연에서의 CO, $C_2H_4$의 산화반응)

  • Chong Soo Han;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.218-224
    • /
    • 1980
  • The surface reactions of CO and $C_2H_4$ with adsorbed oxygen on ZnO were studied by means of EPR spectroscopy. The EPR spectra of $O_2$ adsorbed ZnO at various temperatures were compared, and the signal at g = 2.014 was characterized as trapped $O^-$ at oxygen vacancy. CO and $C_2H_4$ react with $O^-$ at $25^{\circ}C$ and desorbed as $CO_2$ and $H_2O$ above $200^{\circ}C$. $O_2^-$ species interact with $C_2H_4$ about $100^{\circ}C$, but desorption of partial oxidation products also was not observed until the temperature was raised to $200^{\circ}C$.

  • PDF

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Equilibrium Kinetics and Thermodynamic Parameters Studies for Eosin Yellow Adsorption by Activated Carbon (활성탄에 의한 Eosin Yellow의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3319-3326
    • /
    • 2014
  • Eosin yellow is used a dye and colorant but it is harmful toxic substance. In this paper, batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for eosin yellow adsorption by activated carbon with varying the operating variables like pH, initial concentration, contact time. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. By estimated Langmuir constant value, $R_L$=0.067-0.083, and Freundlich constant value, $\frac{1}{n}=0.237-0.267$, this process could be employed as effective treatment for removal of eosin yellow. From calculated Temkin constant, value, B=1.868-2.855 J/mol, and Dubinin-Radushkevich constant, value, E=5.345-5.735 kJ/mol, this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with good correlation coefficient($r^2$=0.995-0.998). The mechanism of the adsorption process was determined two step like as boundary and intraparticle diffusion.

Reactivity of Biogenic Manganese Oxide for Metal Sequestration and Photochemistry: Computational Solid State Physics Study (전산 고체물리를 이용한 바이오 산화망간 광물의 금속흡착과 광화학 반응도의 이해)

  • Kwon, Ki-Deok D.;Sposito, Garrison
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.

해양 퇴적물 내 납의 흡/탈착 거동

  • 곽문용;박준형;신원식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.248-251
    • /
    • 2004
  • 일반적으로 유기오염 물질의 경우 sequestration 또는 aging 현상에 의해 탈착저항성을 띠게 되는 것으로 알려져 있다. 그러나 중금속의 경우 흡/탈착반응은 탈착저항성이 없는 가역적 반응이라는 보고가 있는 반면 홉/탈착 반응은 비가역적이며 탈착저항성이 존재한다는 보고도 있다. 본 연구에서는 해양 연안 퇴적물에 대한 납의 흡/탈착 실험을 통하여 탈착 저항성을 화인하고 연속추출 실험을 수행함으로써 탈착 저항성 부분의 크기를 규명하고자 하였다. 그리고 각기 다른 pH(4, 6)에서 흡착 실험을 수행함으로써 pH에 따른 흡착친화도를 규명하였다. 그 결과 퇴적물에 대한 납의 흡착량은 높은 pH(6)에서 더 많았고, 각 pH 범위에서 납은 탈착저항성을 가지는 것으로 나타났으며, 연속추출결과 Organic Material bound부분에 66% 정도가 흡착되어 있음을 알 수 있었다.

  • PDF

Competive Adsorption Characteristics of CFW on Cu and Zn (음식물 탄화재의 Cu와 Zn에 대한 경쟁 흡착특성)

  • Han, Jung-Geun;Kim, Dong-Chan;Hong, Ki-Kwon;Yoon, Won-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This paper describes the batch test results for application of CFW(Carbonized Foods Waste), which was produced by the process of recycling waste, in PRB system. It analyzed characteristics for individual adsorption and competitive adsorption of Cu and Zn in heavy metals. In individual adsorption, the Langmuir and Freundlich models are used to predict adsorption equilibrium. The adsorption equilibrium corresponded to the Langmuir's and the maximum adsorption amount of Cu was greater than Zn's. The removal of heavy metal is predicted that Zn was faster than Cu. The reaction rate of Zn based on Pseudo-first-order and Pseudo-second-order was faster than Cu's, and the result of competitive adsorption test confirmed that the adsorption amount of Zn is reduced under similar condition for competitive adsorption rate of Cu and Zn. When Zn solution is mixed in Cu, Cu is adsorbed 86% on CFW. However, the adsorption of Zn is 19% on the contrary condition. Therefore, the removal characteristics of separate heavy metal should be considered for efficient treatment of contaminated ground based on complex heavy metal.

Study on Adsorption Features of Arsenic onto Lepidocrocite (레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명)

  • Lee, Woo-Chun;Jeong, Hyeon-Su;Kim, Ju-Yong;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.42 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Systematic studies are performed for arsenic adsorption on synthesized lepidocrocite. The synthesized lepidocrocite with high surface area of $94.8\;g/m^2$ has shown that the point of zero charge(PZC) is 6.57 determined by potentiometric titration, suggestive of high capacity of arsenic removal. Results show that arsenite[As(III)] uptake by synthesized lepidocrocite is greater than that of arsenate[As(V)] at pH $2{\sim}12$, indicating that the lepidocrocite has high affinity toward arsenite rather than arsenate. Adsorption of arsenate decreases with increasing pH from 2 to 12, whereas arsenite sorption increases until pH 8.0, and then decreases dramatically with increasing pH, suggesting that changes in surface charge of the lepidocrocite as a function of pH playa important role in aresinc uptake by the lepidocrocite. Upon kinetic experiments, our results demonstrate that both arsenite and arsenate sorption on the lepidocrocite increases rapidly for the first 4 h followed by little changes during the duration of the experiment, showing that adsorption plays a key role in aresenic uptake by the lepidocrocite. Our results also show that power function and elovich models are the best fit for the adsorption kinetics of arsenite and aesenate on the lepidocrocite.

유해물질 용출방지제의 조성과 용출특성에 미치는 영향

  • 신학기;김남석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.275-276
    • /
    • 2002
  • CaO는 물과 반응하여 발열반응을 일으켜서 CaO에 코팅된 계면활성제를 용해시키며 그리고 규산소다에 흡착된 중금속과 유기물을 고정화 시키는 역할을 담당한다. 그리고 규산소다는 물과 가수분해하여 다공성이 되면서 중금속과 유기물 등을 흡착시키는 역할을 담당한다. 또 CaO에 코팅된 계면화성제는 기름과 반응성이 우수하므로 $80^{\circ}C$$90^{\circ}C$에서 용해하여 기름과 반응하는 특성을 갖고 있다. 미분 슬래그는 보간 중에 암석화되는 과정을 도와 주므로 시간이 경과하면 pH가 점점 중성으로 변화하는 현상을 보여 주었다.

  • PDF

금속 프탈로시아닌 유도체의 제조 및 그의 소취 특성(1)

  • 김애경;최창남;조동련
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.338-341
    • /
    • 1998
  • 악취의 주원인은 염기성 취기의 대표인 암모니아, 산성 취기의 대표인 황화수소, 그리고 트리메틸아민이며, 이들은 법정 악취물질로써 지정되어 있다$^1$. 이와 같은 악취를 없애는 소취기구는 활성탄 및 제오라이트 등과 같은 물질에 대한 물리적 흡착에 의한 것, 산화제 및 환원제에 의한 화학반응에 의한 것, 미생물 및 효소에 의한 생물학적 반응에 의한 것으로 대별되지만, 물리 흡착은 재방출의 문제가 있고 화학 및 생물학적 반응에는 소취성분 자체의 유해성 및 반응후 물질의 유해성이 문제가 되는 경우가 있다.(중략)

  • PDF