• Title/Summary/Keyword: 흡인

Search Result 1,814, Processing Time 0.029 seconds

Effects of pH of soil medium on the growth and nutrient absorption of cultivated and native Chinese chives plants (토양배지의 pH가 재배 및 자생 부추류의 생육과 양분흡수에 미치는 영향)

  • Ku, Hyun-Hwoi;Lee, Sang Gak;Chiang, Mae-Hee;Choi, Jong-Lak;Lee, Sang-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • This experiment was conducted to investigate the effects of pH on the mineral nutrient uptake and growth of the four Chinese chives species. The Chinese chives species used in the experiment were the cultivated species grown in the farm (cultivated Allium tuberosum) and three wild species of wild Allium tuberosum, A. thunbergii and A. senescens. The pH levels of soil medium were set to be 4.5, 6.5, and 7.5. Fresh weight(FW) of cultivated A. tuberosum was highest at all pH levels. The increase of soil pH increased the FW of the wild A. tuberosum and A. thunbergii, but no difference was noted for the A. tuberosum and A. senescens. Plant height was higher in the order of wild A. tuberosum, A. thunbergii, and cultivated A. tuberosum and A. thunbergii. Notably plant height of the wild A. tuberosum increased significantly by the pH increase. The Zn content of the wild A. tuberosum was shown to be significantly higher than that of the other species and increased with the increase of soil pH. This indicates that there is a close relationship between the plant height and Zn content in Chinese chives plant. Principal component analysis for characterizing closely related A. species using the factors of plant growth and amounts of nutrients uptake showed that the cultivated A. and wild A. tuberosum were in the $4^{th}$ quadrant of the graph which are classified as the same species, while A. senescens and thunbergii was in $1^{st}$ and $3^{rd}$ quadrant indicating different species, respectively.

Incidence and Occurrence Pattern of Viruses in Lilies (Lilium spp.) on Jeju Island (제주지역 백합에서의 바이러스 발생 현황)

  • Kim, Hyo Jeong;Song, Jeong Heub;Song, MinA;Lee, Kwang Ju;Ko, Yoon Jeong;Park, Jeong Hoon;Yang, Young Taek;Heo, Tae Hyeon
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.79-83
    • /
    • 2019
  • To investigate the incidence status of lily viruses on Jeju island, lily samples were collected from 2015 to 2018 and examined for virus infection using RT-PCR. Of the viral infections, mixed and single infections were 70.0% and 17.9%, respectively. The incidence of mixed infections was highest for PlAMV and LSV as 43.4% in 2015; PlAMV, LSV 33.1% in 2016; LSV, LMoV 10.2% in 2017; and PlAMV, LSV, LMoV and CMV 15.8% in 2018. The incidence of PlAMV was observed to be 82.0% in 2015, 49.4% in 2016, 13.6% in 2017, and 39.5% in 2018 after the first occurrence of PlAMV in 2013. No symptoms were observed for single infection with LSV. However, in the case of mixed infection with LSV and LMoV, mosaic and leaf malformation symptoms appeared. With mixed infection with LSV and CMV, pale brown necrotic spots appeared, and mosaic and leaf curling were induced. PlAMV was more common in mixed infection than in single infection, and caused necrosis following the development of reddish-brown spots. PlAMV significantly decreased the marketability of lilies owing to the generation of leaf anomalies and curls, and its symptoms were more severe in mixed infections.

Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column (SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Rina;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.54-63
    • /
    • 2021
  • Vanadium and tungsten can be obtained by separating/recovering the leaching solution from a spent SCR DeNOX catalyst using the soda roasting-water leaching process. Therefore, in this study, the adsorption/desorption mechanism of vanadium and tungsten in an ion-exchange column was investigated using Lewatit MonoPlus MP 600, a strong basic anion exchange resin. The operating conditions for the separation of vanadium and tungsten in the ion-exchange column was intended to present. By conducting a continuous adsorption experiment in a pH 8.5 solution, the adsorption capacity of vanadium and tungsten was found to be 44.75 and 64.92 mg/(g of resin), respectively, which showed that the adsorption capacity of tungsten was larger than that of vanadium because of the difference in ion charge. Vanadium has a higher affinity for MP 600 than tungsten. Consequently, as the vanadium-containing solution is eluted through the ion exchange resin onto which tungsten is adsorbed, the adsorbed tungsten is exchanged with vanadium and desorbed. A continuous experiment was performed with a solution of vanadium and tungsten prepared at the same concentration as the spent SCR DeNOX catalyst leachate. The adsorption capacity of vanadium was found to be 48.72 mg/(g of resin) and 80% of the supplied vanadium was adsorbed; in contrast, almost no tungsten was adsorbed. Therefore, vanadium and tungsten were separated effectively. The ion exchange resin was treated with 2 M HCl at 15 mL/h, and 97.7% of the vanadium(99% purity) could be desorbed. After desorption, NH4Cl was added to precipitate ammonium polyvanadate at 90℃ and recover 93% of the vanadium.

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

Analysis of Changes in Photosynthetic Ability, Photosystem II Activity, and Canopy Temperature Factor in Response to Drought S tress on Native Prunus maximowiczii and Prunus serrulate (자생 산개벚나무, 잔털벚나무의 건조 스트레스에 따른 광합성 및 광계II 활성, 엽온 인자 변화 분석)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Bae, Eun-Ji
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.405-417
    • /
    • 2022
  • The purpose of this study was to describe the photosynthetic features of Prunus maximowiczii and Prunus serrulate Lindl. var. pubescens (Makino) Nakai in response to drought stress. Specifically, we studied the effects of drought on photosynthetic ability and photosystem II activity. Drought stress (DS) was induced by cutting the water supply for 30 days. DS decreased the moisture contents in the soil, and between the 10th and 12th days of DS, both species had 10% or less of x., After the 15th day of DS, it was less than 5%, which is a condition for disease to start. We observed a remarkable decrease of maximum photosynthesis rate starting from 10th day of DS; the light compensation point was also remarkable. Dark respiration and net apparent quantum yield decreased significantly on the 15th day of DS, and then increased on the 20th day. In addition, the stomatal transpiration rate of P. maximowiczii decreased significantly on the15th day of DS, and then increased on the 20th day. Water use efficiency increased on the 15th day of DS, and then decreased on the 20th day. The stomatal transpiration rate of P. serrulate decreased significantly on the 20th day of DS, and then increased afterward, while its water use efficiency increased on the 20th day of DS, and then decreased afterward. These results indicate that the closure of stoma prevented water loss, resulting in a temporary increase of water use efficiency. Chlorophyll fluorescence analysis detected remarkable decreases in the functional index (PIABS) and energy transfer efficiency in P. maximowiczii after the 15th day of DS. Meanwhile, photosystem II activity decreased in P. serrulate after 20 days of DS. In addition, Ts-Ta, PIABS, DIO/RC, ETO/RC followed similar trends as those of the soil moisture content and photosynthetic properties, indicating that they can be used as useful variables in predicting DS in trees.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Assessment of stream water quality and pollutant discharge loads affected by recycled irrigation in an agricultural watershed using HSPF and a multi-reservoir model (HSPF와 다중 저류지 모형을 이용한 농업지역 순환관개에 의한 하천 수질 및 배출부하 영향 분석)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The recycled irrigation is a type of irrigation that uses downstream water to fulfill irrigation demand in the upstream agricultural areas; the used irrigation water returns back to the downstream. The recycled irrigation is advantageous for securing irrigation water for plant growth, but the returned water typically contains high levels of nutrients due to excess nutrients inputs during the agricultural activities, potentially deteriorating stream water quality. Therefore, quantitative assessment on the effect of the recycled irrigation on the stream water quality is required to establish strategies for effective irrigation water supply and water quality management. For this purpose, a watershed model is generally used; however no functions to simulate the effects of the recycled irrigation are provided in the existing watershed models. In this study, we used multi-reservoir model coupled with the Hydrological Simulation Program-Fortran (HSPF) to estimate the effect of the recycled irrigation on the stream water quality. The study area was the Gwangok stream watershed, a subwatershed of Gyeseong stream watershed in Changnyeong county, Gyeongsangnam-do. The HSPF model was built, calibrated, and used to produce time series data of flow and water quality, which were used as hypothetical observation data to calibrate the multi-reservoir model. The calibrated multi-reservoir model was used for simulating the recycled irrigation. In the multi-reservoir model, the Gwangok watershed consisted of two subsystems, irrigation and the Gwangok stream, and the reactions (plant uptake, adsorption, desorption, and decay) within each subsystem, and fluxes of water and materials between the subsystems, were modeled. Using the developed model, three scenarios with different combinations of the operating conditions of the recycled irrigation were evaluated for their effects on the stream water quality.

Characteristics Evaluation of Hobun Pigments according to Shell Types and Calcination (패각의 종류 및 소성 여부에 따른 호분안료의 특성 평가)

  • Ju Hyun Park;Sun Myung Lee;Myoung Nam Kim;Jin Young Hong
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.899-909
    • /
    • 2023
  • In this study, the material scientific characteristics of Hobun pigments used as white inorganic pigment for traditional cultural heritage were identified according to the type of shell and calcination and evaluated the stability of the preservation environment. For the purpose of this, we collected 2 different types of Hobun pigments made by oyster and clam shell and its calcined products(at 1,150℃). Hobun pigments before calcined identified calcium carbonate such as calcite, aragonite but calcination derived changing main composition to portlandite and calcite. Results of FE-SEM showed characteristics microstructure for each shell but pigments after calcined observed porous structure. Porous granule highly caused oil adsorption according to increase specific surface area of pigments. In addition, the whiteness improved after calcined pigments compared to non-calcined pigments, and the color improvement rate of Hobun pigment (CS) which made of clam shell was higher. As a result of the accelerated weathering test, the Hobun pigment-colored specimen had a color difference value of less than 2 after the test, which was difficult to recognize with the naked eye. In particular, the color stability has improved as the color difference value of the Hobun pigment is smaller after calcined compared to before non-calcined pigment. However, it was confirmed that the stability of the painting layer was lower in the specimen after calcined pigment. For antifungal activity test, Aspergillus niger, Tyromyces palustris and Trametes versicolor were used as test fungi, and all pigments were found to have preventive and protective effects against fungi. Especially, the antifungal effect of the calcined pigment was excellent, which is due to the stronger basicity of the pigment.

The embryological studies on the interspecific hybrid of ginseng plant (Panax ginseng x P. Quiuquefolium) with special references to the seed abortion (인삼의 종간잡종 Panax ginseng x P Quinquefoilium의 발생학적 연구 특히 결실불능의 원인에 관하여)

  • Jong-Kyu Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.69-86
    • /
    • 1969
  • On the growing of the interspecific hybrid ginseng plant, the phenomena of hybrid vigoures are observed in the root, stem, and leaf, but it can not produce seeds favorably since the ovary is abortive in most cases in interspecific hybrid plants. The present investigation was undertaken in an attempt to elucidate the embryological dses of the seed failure in the interspecific hybrid of ginseng (Panax Ginseng ${\times}$ P. Quinque folium). And the results obtained may be summarized as follows. 1). The vegetative growth of the interspecific hybrid ginseng plant is normal or rather vigorous, but the generative growth is extremely obstructed. 2). Even though the generative growth is interrupted the normal development of ovary tissue of flower can be shown until the stage prior to meiosis. 3). The division of the male gameto-genetic cell and the female gameto-genetic cell are exceedingly irregular and some of them are constricted prior to meiosis. 4). At meiosis in the microspore mother cell of the interspecific hybrid, abnormal division is observed in that the univalent chromosome and chromosome bridge occure. And in most cases, metaphasic configuration is principally presented as 23 II+2I, though rarely 22II+4I is also found. 5). Through the process of microspore and pollen formation of F1, the various developmental phases occur even in an anther loclus. 6). Macro, micro and empty pollen grains occur and the functional pollen is very rare. 7). After the megaspore mother cell stage, the rate of ovule development is, on the whole, delayed but the ovary wall enlargement is nearly normal. 8). Degenerating phenomena of ovules occur from the megaspore mother cell stage to 8-nucleate embryo sac stage, and their beginning time of constricting shape is variously different. 9). The megaspore arrangement in the parent is principally of the linear type, though rarely the intermediate type is also observed, whereas various types, viz, linear, intermediate, Tshape, and I shape can be observed in hybrid. 10). After meiosis, three or five megaspore are some times counted. 11). Charazal end megaspore is generally functional in the parents, whereas, in F1, very rarely one of the center megaspores (the second of the third megaspore) grows as an embryo sac mother cell. 12). In accordance with the extent of irregularity or abnormality in meiosis, division of embryo sac nuclei and embryo sac formation cause more nucellus tissue to remain within th, embryo sac. 13). Even if one reached the stage of embryo sac formation, the embryo sac nuclei are always precarious and they can not be disposed to theil proper, respective position. 14). Within the embryo sac, which is lacking the endospermcell, the 4-celled proembryo, linear arrangement, is observed. 15). Through the above respects, the cause of sterile or seed failure of interspecific hybrid would be presumably as follows, By interspecific crossing gene reassortments takes place and the gene system influences the metabolism by the interference of certain enzyme as media. In the F1 plant, the quantity and quality of chemicals produced by the enzyme system and reaction system are entirely different from the case of the parents. Generally, in order to grow, form, and develop naw parts it is necessary to change the materials and energy with reasonable balance, whereas in the F1 plant the metabolic process becomes abnormal or irregular because of the breakdown of the balancing. Thus the changing of the gene-reaction system causes the alteration of the environmental condition of the gameto-genetic cells in the anther and ovule; the produced chemicals cause changes of oxidatio-reduction potential, PH value, protein denaturation and the polarity, etc. Then, the abnormal tissue growing in the ovule and emdryo sac, inhibition of normal development and storage of some chemicals, especially inhibitor, finally lead to sterility or seed failure. Inconclusion, we may presume that the first cause of sterile or seed abortion in interspecific hybrids is the gene reassortment, and the second is the irregularity of the metabolic system, storage of chemicals, especially inhibitor, the growth of abnormal tissue and the change of the polarity etc, and they finally lead to sexual defect, sterility and seed failure.

  • PDF

Weaning Following a 60 Minutes Spontaneous Breathing Trial (1시간 자가호흡관찰에 의한 기계적 호흡치료로부터의 이탈)

  • Park, Keon-Uk;Won, Kyoung-Sook;Koh, Young-Min;Baik, Jae-Jung;Chung, Yeon-Tae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.361-369
    • /
    • 1995
  • Background: A number of different weaning techniques can be employed such as spontaneous breathing trial, Intermittent mandatory ventilation(IMV) or Pressure support ventilation(PSV). However, the conclusive data indicating the superiority of one technique over another have not been published. Usually, a conventional spontaneous breathing trial is undertaken by supplying humidified $O_2$ through T-shaped adaptor connected to endotracheal tube or tracheostomy tube. In Korea, T-tube trial is not popular because the high-flow oxygen system is not always available. Also, the timing of extubation is not conclusive and depends on clinical experiences. It is known that to withdraw the endotracheal tube after weaning is far better than to go through any period. The tube produces varying degrees of resistance depending on its internal diameter and the flow rates encountered. The purpose of present study is to evaluate the effectiveness of weaning and extubation following a 60 minutes spontaneous breathing trial with simple oxygen supply through the endotracheal tube. Methods: We analyzed the result of weaning and extubation following a 60 minutes spontaneous breathing trial with simple oxygen supply through the endotracheal tube in 18 subjects from June, 1993 to June, 1994. They consisted of 9 males and 9 females. The duration of mechanical ventilation was from 38 hours to 341 hours(mean: $105.9{\pm}83.4$ hours). In all cases, the cause of ventilator dependency should be identified and precipitating factors should be corrected. The weaning trial was done when the patient became alert and arterial $O_2$ tension was adequate($PaO_2$ > 55mmHg) with an inspired oxygen fraction of 40%. We conducted a careful physical examination when the patient was breathing spontaneously through the endotracheal tube. Failure of weaning trial was signaled by cyanosis, sweating, paradoxical respiration, intercostal recession. Weaning failure was defined as the need for mechanical ventilation within 48 hours. Results: In 19 weaning trials of 18 patients, successful weaning and extubation was possible in 16/19(84.2 %). During the trial of spontaneous breathing for 60 minutes through the endotracheal tube, the patients who could wean developed slight increase in respiratory rates but significant changes of arterial blood gas values were not noted. But, the patients who failed weaning trial showed the marked increase in respiratory rates without significant changes of arterial blood gas values. Conclusion: The result of present study indicates that weaning from mechanical ventilation following a 60 minutes spontaneous breathing with $O_2$ supply through the endotracheal tube is a simple and effective method. Extubation can be done at the same time of successful weaning except for endobronchial toilet or airway protection.

  • PDF