DOI QR코드

DOI QR Code

Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column

SCR 탈질 폐촉매로부터 이온교환칼럼을 이용한 바나듐과 텅스텐의 분리

  • Heo, Seo-Jin (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Jeon, Jong-Hyuk (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Rina (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Chul-Joo (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Chung, Kyeong Woo (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Jeon, Ho-Seok (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Yoon, Ho-Sung (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources)
  • 허서진 (한국지질자원연구원 광물자원본부) ;
  • 전종혁 (한국지질자원연구원 DMR 융합연구단) ;
  • 김리나 (한국지질자원연구원 광물자원본부) ;
  • 김철주 (한국지질자원연구원 광물자원본부) ;
  • 정경우 (한국지질자원연구원 광물자원본부) ;
  • 전호석 (한국지질자원연구원 광물자원본부) ;
  • 윤호성 (한국지질자원연구원 광물자원본부)
  • Received : 2021.07.27
  • Accepted : 2021.08.12
  • Published : 2021.08.31

Abstract

Vanadium and tungsten can be obtained by separating/recovering the leaching solution from a spent SCR DeNOX catalyst using the soda roasting-water leaching process. Therefore, in this study, the adsorption/desorption mechanism of vanadium and tungsten in an ion-exchange column was investigated using Lewatit MonoPlus MP 600, a strong basic anion exchange resin. The operating conditions for the separation of vanadium and tungsten in the ion-exchange column was intended to present. By conducting a continuous adsorption experiment in a pH 8.5 solution, the adsorption capacity of vanadium and tungsten was found to be 44.75 and 64.92 mg/(g of resin), respectively, which showed that the adsorption capacity of tungsten was larger than that of vanadium because of the difference in ion charge. Vanadium has a higher affinity for MP 600 than tungsten. Consequently, as the vanadium-containing solution is eluted through the ion exchange resin onto which tungsten is adsorbed, the adsorbed tungsten is exchanged with vanadium and desorbed. A continuous experiment was performed with a solution of vanadium and tungsten prepared at the same concentration as the spent SCR DeNOX catalyst leachate. The adsorption capacity of vanadium was found to be 48.72 mg/(g of resin) and 80% of the supplied vanadium was adsorbed; in contrast, almost no tungsten was adsorbed. Therefore, vanadium and tungsten were separated effectively. The ion exchange resin was treated with 2 M HCl at 15 mL/h, and 97.7% of the vanadium(99% purity) could be desorbed. After desorption, NH4Cl was added to precipitate ammonium polyvanadate at 90℃ and recover 93% of the vanadium.

SCR 탈질 폐촉매로부터 바나듐과 텅스텐은 소다배소-수침출 공정을 통해 얻은 침출액으로부터 분리/회수하여 얻을 수 있다. 본 연구에서는 강염기성 음이온교환수지인 Lewatit monoplus MP 600을 사용하여 연속식 이온교환칼럼에서 수용액에 용해되어 있는 바나듐과 텅스텐의 흡·탈착 거동을 알아보고, 바나듐/텅스텐 분리를 위한 연속식 이온교환칼럼 운전조건을 제시하고자 하였다. 수용액 pH 8.5에서 단일 성분 수용액으로 연속식 흡착실험을 수행한 결과, 흡착용량은 바나듐 44.75 mg/(g of resin)과 텅스텐 64.92 mg/(g of resin)으로 바나듐보다 텅스텐의 흡착용량이 크게 나타났으며 이는 이온교환수지에 흡착되는 이온의 전하수가 바나듐 보다는 텅스텐이 작기 때문이라고 사료된다. 텅스텐이 흡착된 이온교환수지에 바나듐 함유 수용액이 공급됨에 따라 이온교환수지에 흡착되었던 텅스텐이 바나듐과 교환되며 탈착되는 거동을 보였으며, 이로부터 MP 600에 대하여 바나듐이 텅스텐보다 친화도(affinity)가 높음을 알 수 있었다. SCR 탈질 폐촉매 침출액과 동일한 농도의 바나듐과 텅스텐 혼합용액으로 pH 8.5에서 연속식 실험을 수행한 결과 바나듐의 흡착 용량은 48.72 mg/(g or resin)으로 공급량의 80%가 흡착된 반면 텅스텐의 경우 이온교환수지에 흡착된 양이 거의 0에 근접하며 바나듐과 텅스텐의 분리가 효과적으로 이루어졌다. 바나듐이 흡착된 이온교환수지로부터 2M HCl를 15 mL/h로 공급하여 97.7%의 바나듐을 99%의 순도로 탈착시킬 수 있었다. 탈착용액으로부터 염화암모늄을 침전제로 사용하여 90℃에서 암모늄폴리바나데이트 형태로 93%의 바나듐을 회수하였다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발GP2020-013)' 과제의 지원을 받아 수행되었습니다.

References

  1. Matsuda, S., and Kato, A., 1983 : Titanium oxide based catalysts-a review, Applied Catalysis, 8(2), pp.149-165. https://doi.org/10.1016/0166-9834(83)80076-1
  2. Yang, B., Zjou, J., Wang, W., et al., 2020 : Extraction and Separation of tungsten and vanadium from spent V2O5-WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 601, pp.124963. https://doi.org/10.1016/j.colsurfa.2020.124963
  3. Peng, H., 2019 : A literature review on leaching and recovery of vanadium, Journal of Environmental Chemical Engineering, 7(5), pp.103313. https://doi.org/10.1016/j.jece.2019.103313
  4. Yang, Z., Chen, M., Wu, G., et al., 2021 : Separation and recovery vanadium (V) and chromium (VI) using amide extractants based on the steric hindrance effect, Journal of Environmental Chemical Engineering, 9(5), pp.105939. https://doi.org/10.1016/j.jece.2021.105939
  5. Choi, C., Kim, S., Kim, R., et al., 2017 : A review of vanadium electrolytes for vanadium redox flow batteries, Renewable and Sustainable Energy Reviews, 69, pp.263-274. https://doi.org/10.1016/j.rser.2016.11.188
  6. Baek, K. W., Park, S. W., Nho, Y. C., et. al., 2007 : Synthesis of High Loading PONF-g-GMA Anion Exchange Fiber Containing Ion Exchange Resin and Their Adsorption Properties of Vanadium, Polymer (Korea), 31(4), pp.315-321.
  7. Wu, W. C., Tsai, T. Y., and Shen, Y. H., 2016 : Tungsten recovery from spent SCR catalyst using alkaline leaching and ion exchange, Minerals, 6(4), pp. 107. https://doi.org/10.3390/min6040107
  8. Heo, S. J., Jeon, J. H., Kim, C. J., et. al., 2020 : Separation behavior of vanadium and tungsten from the spent SCR DeNOX catalyst by strong basic anion exchange resin, Journal of the Korean Institute of Resources Recycling, 29(5), pp.38-47. https://doi.org/10.7844/KIRR.2020.29.5.38
  9. Patel, H., 2019 : Fixed-bed column adsorption study: a comprehensive review, Applied Water Science, 9(3), pp.1-17. https://doi.org/10.1007/s13201-019-0927-7
  10. Kose, T. E., and Ozturk, N., 2008 : Boron removal from aqueous solutions by ion-exchange resin: column sorptionelution studies, Journal of Hazardous Materials, 152(2), pp.744-749. https://doi.org/10.1016/j.jhazmat.2007.07.041
  11. Long, D. L., Tsunashima, R., and Cronin, L., 2010 : Polyoxometalates: building blocks for functional nanoscale systems, Angewandte Chemie Inter national Edition, 49(10). pp.1736-1758.
  12. Zhang, Q. L., and Shen, P. W., 1991 : Titanium, vanadium and chromium, Inorganic Chemistry Series, 8, pp.238.
  13. Kim, J., Park, C. W., Lee, K. W., et. al., 2019 : Adsorption of ethylenediaminetetraacetic acid on a gel-type ion-exchange resin for purification of liquid waste containing Cs Ions, Polymers, 11(2), pp.297. https://doi.org/10.3390/polym11020297
  14. Karakurt, S., 2019 : removal of carcinogenic arsenic from drinking water by the application of ion exchange resins, Oncogen Journal, 2(1), 5.
  15. Yoon, H. S., Chae, S., Kim, C. J., et al., 2019 : Precipitation behavior of ammonium vanadate from solution containing vanadium, Journal of Korean Institute of Resources Recycling, 28(5), pp.42-50.