DOI QR코드

DOI QR Code

Comparison for Torrefaction Properties and Combustion Behaviors of Several Biomass Materials

바이오매스 물질에 따른 반탄화 특성 및 연소 거동

  • Ryu, Geun-Yong (Dep. of Advanced Materials Engineering, Chosun University) ;
  • Kim, Sun-Joong (Dep. of Materials Engineering & Science, Chosun University)
  • 류근용 (조선대학교 첨단소재공학과) ;
  • 김선중 (조선대학교 신소재공학과)
  • Received : 2021.06.15
  • Accepted : 2021.08.03
  • Published : 2021.08.31

Abstract

Biomass can be considered as chemical energy obtained from nature, and includes all living organisms such as plants, animals, and microorganisms. Biomass is eco-friendly, is easily obtainable from the environment, and can be recycled without special treatment processes. Biomass can also be converted into bioenergy fuel through pyrolysis and fermentation. Therefore, it has been considered as a renewable energy source, which prevents the depletion of natural resources such as fossil fuels. In this study, torrefaction to increase the carbon content in various types of biomass sources (sawdust, rice straw, rice bristles, coffee ground, and waste wood) was conducted under an inert atmosphere and at a temperature of 523~573K. The possibility of using torrefied biomass as an alternative to solid fuel for industrial purposes was analyzed by examining the carbon concentration and combustion behaviors.

바이오매스는 자연에서 얻어진 화학적 에너지로 활용할 수 있으며 곡물, 식물, 동물과 미생물 등의 모든 유기체를 말한다. 별도의 처리과정을 거치지 않아도 재생 및 재활용이 가능하여 친환경적이며 주변에서 쉽게 얻을 수 있다는 이점이 있다. 한편, 바이오매스는 열분해 또는 발효 과정을 거쳐 바이오에너지 연료로 활용할 수 있다. 따라서 화석 연료의 고갈과 환경 영향 등의 문제 해결을 위한 대체 에너지 중 하나로 평가되고 있다. 본 연구에서는 바이오매스의 반탄화 처리가 가능한 523~573K의 온도 및 불활성 분위기 조건에서 다양한 바이오매스(톱밥, 볏짚, 쌀겨, 커피박, 폐목재) 내 탄소 함량을 높이는 공정을 진행하였다. 그리고, 반탄화한 바이오매스를 탄소 농도, 연소 거동 등을 조사하여 철강 산업 등에 활용할 수 있는 고체 연료로서의 가능성을 검토하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지 기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20212010100060).

References

  1. T.Y. Jin, G.Y. Choi, E.M. Lee, et al., 2020 : A Decomposition Analysis of Domestic Carbon Dioxide Emissions Related to Industry Structure and Energy Mix in Korea, Journal of Environmental Policy and Administration, pp.153-182. https://doi.org/10.15301/jepa.2015.23.2.153
  2. H. Coninck, M. Benson., 2014 : Carbon Dioxide Capture and Storage: Issues and Prospects, The Annual Review of Environment and Resoureces, pp.243-270.
  3. G.W. Kim, G.Y. Ryu, S.J.Kim., 2021 : Measurement of Carbon Concentration and Dissolution Ratio in Molten Steel by the Mixing Conditions of Carbon Materials Using Coffee Ground, Resources Recycling, pp.77-82.
  4. E. Biagini, M. Cioni, L. Tognotti, 2005 : Development and characterization of a lab-scale entrained flew reactor for testing biomass fuels, Journal of Science Direct, pp.1524-1534.
  5. K.D. Peaslee, 2008 : Opportunities and Challenges in Steel Manufacturing: Engineering a Brighter Future, AISTech 2008 Brimacombe Lecture, pp.91-102.
  6. K.W. Ng, J.A. MacPhee, L. Giroux, et al., 2011 : Reactivity of bio-coke with CO2, Fuel Processing Technology, pp. 801-804.
  7. C. Figures, C.L. Quere, A. Mahindra, et al., 2018 : Emissionsare still rising: ramp up the cuts, Nature, pp.27-30.
  8. Xueyu Tian, Fengqi You, 2019 : Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power, Applied Energy, pp.413-432.
  9. Babu, B.V., 2008 : Biomass pyrolysis: a state-of-the-art review, Biofuels, Bioproducts & Biorefining, pp.393-414.
  10. G. Cruz, I. Avila, P. M. Crnkovic, 2012 : Effects of torrefacation on biomass: a thermal and morphological evaluation, Proc. of 14th Brazilian Congress of Thermal Sciences and Engineering, pp.18-22.
  11. D. Neves, A. Matos, L. Tarelhoa, et al., 2017 : Volatile gases from biomass pyrolysis under conditions relevant for fluidized bed gasifiers, Analytical and Applied Pyrolysis. pp.57-67.
  12. W.-J. Lee, 2015 : Study on Torrefaction Characteristics of Solid Biomass Fuel and Its Combustion Behavior, Journal of Korea Organic Resource Recycling Association, pp. 59-94.
  13. D. Nicholls, J. Zerbe, 2010 : Cofiring Biomass and Coal for Fossil Fuel Reduction and Other Benefits, General Technical Report PNW-GTR-867.
  14. S.Y. Park, K.C. Oh, C.G. Lee, et al., 2017 : Characteristic Analysis of Torrefied Forestry and Agricultural Byproduct: Focusing on Water Resistance and Heating Value, Korean Society for Agricultural Machinery, pp.50-58.