• Title/Summary/Keyword: 휨내력

Search Result 279, Processing Time 0.021 seconds

The Buckling Characteristics of Single-Layer Lamella Domes according to the Joint Flexibility under Construction (단층라멜라 돔의 시공 중 접합부 강성에 따른 좌굴특성)

  • Suk, Chang-Mok;Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • Single-layer latticed domes with rigid-joint have an advantage in the construction cost and the aesthetic. But, in single-layer latticed domes, the joints are hard to discriminate between pin-joint and rigid-joint, and consisted of semi-rigid joint in practical. And the erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up erection method. This paper verified buckling characteristics of single-Layer lamella domes according to the Joint flexibility under construction by Step-up method. The results are follows: As erection steps increase, the buckling strength decreases. It is occurred the joint buckling by snap through on the top of dome when the joint flexibility close the rigid. And large tensile stress distribution appeared in circumferential member of bottom boundary when the step of construction is low. As the step of construction increase, large compressive stress distribution showed in the top of dome.

Flexural Behavior of Concrete Beams Reinforced with CFRP rebars (CFRP Rebar로 보강한 콘크리트 보의 휨 거동)

  • Lee, Young-Hak;Won, Dong-Min;Kim, Min-Sook;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • To address the problems caused by the corrosion of steel rebar, active research has recently been carried out on members where fiber-reinforced polymer (FRP) is used in place of rebar. As FRP bar is highly brittle and has a low modulus of elasticity, further research is needed on the evaluation of serviceability, in other words on the deflection of flexural concrete members reinforced with FRP rebars. Taking the reinforcement ratio as a variable, this paper analyzes the flexural capacity of concrete beams reinforced with CFRP rebar. The test results of specimens reinforced with CFRP rebar show an increase in stiffness and resisting force along with an increase in the reinforcement ratio. A reinforcement ratio of about 1.3 is needed for the member reinforced with CFRP rebar to show same section property of a steel member. Through a comparison for the value of an effective moment of inertia, the equation suggested by Bischoff & Scanlon predicted values closest to the actual results.

Performance Based Design of Coupling Beam Considering Probability Distribution of Flexural and Shear Strength (휨강도와 전단강도의 확률분포를 고려한 연결보의 성능기반설계)

  • Kim, Yun-Gon;Cho, Suk-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • In this paper, performance based design of coupling beam using non-linear static analysis is proposed considering probability distribution of flexural and shear strength in order to develop flexural hinge. This method considers post-yielding behavior of coupling beam and stress redistribution of system. It can verify the reduced effective stiffness to meet the current design requirement based on linear analysis. It also evaluates the lateral displacement under service load (un-factored wind load) properly. In addition, it can optimize the coupled shear wall system by taking stress redistribution between members into account. For a simplified 30-story building, non-linear static (push-over) analysis was performed and the structural behavior was checked at performance point and several displacement steps. Furthermore, system behavior according to the amount of reinforcement and depth of coupling beam was explored and compared each other.

An Experimental Study on the Structural Behavior of Stub Columns with HSA800 High-strength Steels under Eccentric Loads (편심하중을 받는 건축구조용 고강도 강재(HSA800) 단주의 거동에 관한 실험적 연구)

  • Lee, Kangmin;Lee, Myung Jae;Oh, Young Suk;Oh, Keunyeong;Hong, Sungbin
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.289-297
    • /
    • 2014
  • Recently, high performance steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. In this paper, flexure-compression members with the high-strength steel were experimentally evaluated to satisfy the design criteria when stub columns fabricated with HSA800 steel were eccentrically loaded. This test was conducted on box-shaped and H-shaped steels stub columns with high-strength steel to verify the P-M interaction of members subjected to combined forces according to axial load ratios. The results showed that all specimens were satisfied the requirements of Korean Building Code(KBC2009) for using of structural members.

The Prediction of Debonding Strength on the Reinforced Concrete Beams Strengthened with fiber Reinforced Polymer (섬유복합체로 휨보강된 RC보의 박리하중 예측에 관한 연구)

  • Hong Geon-Ho;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.903-910
    • /
    • 2005
  • In recent years, fiber reinforced polymer(FRP) plates have shown a great promise as an alternative to steel plates for reinforced concrete beam rehabilitation. Reinforced concrete beams strengthened with externally bonded FRP sheets to the tension face can exhibit ultimate flexural strengths several times greater than their original strength if their bond strength is enough. Debonding failure, however, may occur before the strengthened beam can achieve its enhanced flexural strength. The purpose of this paper is to investigate the debonding failure strength of FRP-strengthened reinforced concrete beams. An analytical procedure for calculating debonding load between concrete and strengthening FRP is presented. Based on the local bond stress-slip relationship in the previous studies, uniform bond stress is assumed on the effective bond length. The analytical expressions are developed from linear elastic theory and statistical analyses of experimantal results reported in the literature. The proposed method is verified by comparisons with experimental results reported in the previous researches.

An Experimental Study on the Flexural Behavior of Reinforced Concrete Columns Strengthened with Wire Rope and T-Shape Steel Plate units (와이어로프와 T형 플레이트에 의해 보강된 RC 기둥의 휨 거동에 대한 실험적 연구)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Oh, Sung-Jin;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.153-156
    • /
    • 2008
  • The objective of the present study is to evaluate the flexural behavior of reinforced concrete columns externally strengthened with wire rope and T-shape steel plate units. Three strengened columns and a control unstrengthened column were tested under cyclic lateral load simultaneously subjected to a constant axial load. All columns had same section size, and the arrangement of longitudinal reinforcement and internal hoop. The spacing of wire rope range from 40 ${\sim}$ 80mm, which corresponds from 1.0 ${\sim}$ 0.5, respectively, times the minium amount of hoop specified in seismic design of ACI 318-05. Test results showed that the proposed unbonded-type strengthening procedure is very effective for improving the flexural ductility of reinforced concrete columns.

  • PDF

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.

Experimental Evaluation of Flexural Performance Evaluation of Tapered H-Section Beams with Slender Web (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 실험적 평가)

  • Shim, Hyun Ju;Lee, Seong Hui;Kim, Jin Ho;Lee, Eun Taik;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.483-492
    • /
    • 2007
  • Pre-Engineering Building (PEB) system is one of the most economical structural systems. Tapered members can resist a maximum stress at a single location, whereas stresses of the rest of the members are considerably low. This results in appreciable savings both in terms of materials and construction costs. However, it was appreciated that special consideration would be required for certain aspects of this structural form. In particular, because of their slenderness, webs would buckle laterally and torsionally under the combined action of excessive axial, bending and shear forces. In this study, a total of four large-scale rafters with simple ends were tested. The main parameters were the width-thickness ratio of the web, the stiffener, and the flange brace. The purpose of this experiment is to evaluate the structural stability and to offer back-data on PEB design.

Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite (고인성 복합체로 보강한 조적부재의 휨 거동 평가)

  • Yang, Seung-Hyeon;Kim, Sun-Woong;Kim, Jae-Hwan;Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2021
  • This paper is a basic study to evaluate the possibility of earthquake-resistant reinforcement by reinforcing engineered cementitious composite in masonry members. In order to examine the performance according to the fiber mixing rate of the engineered cementitious composite, a test specimen was prepared according to the formulation design, and flow ability, compressive strength, flexural strength, length change rate, and direct tensile strain were measured. In addition, non-reinforced masonry members, masonry members reinforced with engineered cementitious composite, and masonry members in which glass fibers and wire mesh were separately reinforced with engineered cementitious composites were manufactured, and flexural strength and maximum displacement were measured. All specimens reinforced with engineered cementitious composite showed more than 16 times the effect of maximal strength compared to that of no reinforcement, and as a result of examining the crack shape, the energy dissipation ability was excellent, confirming the possibility of seismic reinforcement.

Evaluation of Structural Performance of RC Beam with Different Depths to Lap Splice Detail of SD700 Headed Bar (SD700 확대머리 철근의 겹침이음 상세를 적용한 단차가 있는 RC 보의 구조성능 평가)

  • Lee, Ji-Hyeong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • This paper conducts an evaluation of the structural performance of the lap splice detail of SD700 headed bar experiment for developing an RC beam with different depths joint details. The experiment variable is lap splice length, yield strength, and end anchorage of main reinforcements. For all specimens, a headed bar was applied to the main reinforcement of the beam with low depth (B2), and the beam with high depth (B1) was applied to the main reinforcement with two splice methods: straight headed bar and 90° hooked-headed bar. The experimental results were that specimens of applying SD500 and SD600 had the results of flexural fracture at the lap splice location, which maximum load was similar. For specimens of appling SD500, the 90° hooked-headed bar of B1, suppressed horizontal cracks in the lap splice section compared to the straight headed bar. Specimens of applying an SD 700 headed bar had the results of brittle anchorage failure. In addition, maximum load was increased with the lap splice length increasing. For specimens of applying SD700 headed bar, test for test maximum load/theoretical load for test development length/design development length were estimated to be 1.30~1.48 for the ACI 318-19 equation, and 1.14~1.30 for the KDS-2021 equation. Thus, ACI 318-19 equation had conservatively greater safety factors as estimated development lengththened.