• Title/Summary/Keyword: 휘발성 유기 물질

Search Result 333, Processing Time 0.028 seconds

Catalytic Oxidation of Toluene over Pd-Activated Alumina Catalysts at Low Temperature (활성알루미나에 담지한 팔라듐 촉매상에서 톨루엔의 저온 연소반응)

  • Lee, Ju-Yeol;Song, Hyung-Jin;Lee, Sang-Bong;Kim, Mi-Hyung;Jo, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.339-347
    • /
    • 2012
  • This study focuses on developing catalysts for the removal of toluene produced from paint booth. Toluene is one of the major VOC in painting, coating process. Pd catalysts have been used in hydrogenation oxidation and low temperature combustion reaction for toluene removal. Pd catalysts, even though it is very precious and expensive. Therefore, the prepared catalysts from minimizing the amount of Pd ratio (0.1~1.0wt%) were measured. As a result, 1.0wt% Pd(R) catalyst under all conditions showed the highest activity. These results may suggest that the catalytic activity is related to Pd dispersion according sintering atmosphere and Pd ratio in the manufacturing process through the analysis of SEM, XRD.

Health Risk Assessment and Analysis on the Volatile Organic Compounds in Some Workplace (모작업장에서 휘발성 유기오염물질의 분석과 근로자들의 건강위해성 평가)

  • Lee, Hyo-Min;Kim, Myung-Soo;Choi, Shi-Nai;Yoon, Eun-Kyung;Park, Jong-Sei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.530-539
    • /
    • 1997
  • This study was conducted to assess the health risk on the volatile organic compounds such as toluene, xylene, and styrene in painting workplace. It was monitored through personal air sampling during working time in selected 5 workplaces and analysed using gas chromatography. For the settlement of exposure situation, there were regarded working conditions such as working hours, yearly working days, and working years. Also, Monte-Carlo simulation was used for the induction of hazard index using toxicity value from IRIS(Integrated risk information system) database. The results of risk assessment were summarized as follows. 1. The air concentration of toluene was $7.096{\pm}15,644ppm,\;2.586{\pm}4.275ppm\;for\;xylene,\;1.914{\pm}5.320ppm$ for styrene in blast painting workplaces. The level of toluene was different significantly compared with the level of xylene and styrene. 2. Computated chronic daily intake values of 95th percentile on toluene, xylene and styrene treated by Monte-Carlo simulation were 9.616, 3.567, 2.782 mg/kg/day, respectively. 3. Computated hazard index values of 75th percentile on toluene, xylene and styrene treated by Monte-Carlo simulation were 3.5, 1.0 and 1.6, respectively. Adverse health effects on the toluene, xylene and styrene would be expected by working exposure in selected 5 workplaces since the hazard indices of three compounds were exceeded 1 in the surroundings of 75th percentile though having the low emerged frequency.

  • PDF

An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System (복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정)

  • Uhm, Sunghyun;Hong, Gi Hoon;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.237-242
    • /
    • 2021
  • Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.

Rating Evaluation of Fire Risk for Combustible Materials in Case of Fire (화재 시 연소성 물질에 대한 화재 위험성 등급 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.75-82
    • /
    • 2021
  • This study investigated the fire risk assessment of woods and plastics for construction materials, focusing on the fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) by a newly designed method. Japanese cedar, red pine, polymethylmethacrylate (PMMA), and polyvinyl chloride (PVC) were used as test pieces. Fire characteristics of the materials were investigated using a cone calorimeter (ISO 5660-1) equipment. The fire performance index-III measured after the combustion reaction was found to be 1.0 to 15.0 with respect to PMMA. Fire risk by fire performance index-III increased in the order of PVC, red pine, Japanese cedar, and PMMA. The fire growth index-III was found to be 0.5 to 3.3 based on PMMA. Fire risk by fire growth index-III increased in the order of PVC, PMMA, red pine, and Japanese cedar. COpeak concentrations of all specimens were measured between 106 and 570 ppm. In conclusion, it is understood that Japanese cedar with a low bulk density and PMMA containing a large amount of volatile organic substances have a low fire performance index-III and high fire growth index-III, and thus have high fire risk due to fire. This was consistent with the fire risk index-IV.

a-IGZO 박막을 적용한 투명 저항 메모리소자의 특성 평가

  • Gang, Yun-Hui;Lee, Min-Jeong;Gang, Ji-Yeon;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.15.2-15.2
    • /
    • 2011
  • 비휘발성 저항 메모리소자인 resistance random access memory (ReRAM)는 간단한 소자구조와 빠른 동작특성을 나타내며 고집적화에 유리하기 때문에 차세대 메모리소자로써 각광받고 있다. 현재, 이성분계 산화물, 페로브스카이트 산화물, 고체 전해질 물질, 유기재료 등을 응용한 저항 메모리소자에 대한 연구가 활발히 진행되고 있다. 그 중 ZnO를 기반으로 하는 amorphous InGaZnO (a-IGZO) 박막은 active layer 로써 박막트랜지스터 적용 시 우수한 전기적 특성을 나타내며, 빠른 동작특성과 높은 저항 변화율을 보이기 때문에 ReRAM 에 응용 가능한 재료로써 기대되고 있다. 또한 가시광선 영역에서 광학적으로 투명한 특성을 보이기 때문에 투명소자로서도 응용이 기대되고 있다. 본 연구에서는 indium tin oxide (ITO) 투명 전극을 적용한 ITO/a-IGZO/ITO 구조의 투명 소자를 제작하여 저항 메모리 특성을 평가하였다. Radio frequency (RF) sputter를 이용하여 IGZO 박막을 합성하고, ITO 전극을 증착하여 투명 저항 메모리소자를 구현하였고, resistive switching 효과를 관찰하였다. 또한, 열처리를 통해 a-IGZO 박막 내의 Oxygen vacancy와 같은 결함의 정도에 따른 on/off 저항의 변화를 관찰할 수 있었다. 제작된 저항 메모리소자는 unipolar resistive switching 특성을 보였으며, 높은 on/off 저항의 차이를 유지하였다. Scanning electron microscope (SEM)을 통해 합성된 박막의 형태를 평가하였고, X-ray diffraction (XRD) 및 transmission electron microscopy (TEM)을 통해 결정성을 평가하였다. 제작된 소자의 전기적 특성은 HP-4145 를 이용하여 측정하고 비교 분석하였다.

  • PDF

Taste Components and Palatability of Black Bean Chungkugjang Added with Kiwi and Radish (키위와 무를 첨가한 검정콩 청국장의 맛성분 및 기호도)

  • 손미예;김미혜;박석규;박정로;성낙주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • To obtain the repression of off-odor and the improvement of food quality in b1ack bean chungkugjang (BBC), some baste components of BBC added with kiwi (BBCK) or radish (BBCR) and fermented at 42$^{\circ}C$ for 3 days were investigated. Although contents of free amino acids in BBC were lower than those of soybean chung-kugjang (SC), they increased by adding kiwi and radish homogenate to black bean, indication that two materials were effective to the enzymatic digestibility of soy protein during fermentation. Among organic acids, citric acid was the most abundant, followed by acetic acid and lactic acid. Fatty acid composition was high in the order of linoleic acid (44.28~54.24%), oleic acid (18.18~22.10%) and palmitic acid(9.93~15.51%). There was no significant difference in compositions of organic acids and fatty acids of chungkugjangs. Majar volatile compounds of BBC were 2.5-dimethyl parazine and trimethyl pyrazine. Contents of alkyl pyrazines that of contribute the characteristic aroma and flayer of BBCK and BBCR decreased as compared with those of SC, respectively. Uracil and UMP were major nucleic acid-related compounds in all four types chungkugjangs. Contents of the other nucleic acid-related compounds showed a similar trend in all chungkugjangs. In sensory evaluation, kiwi and radish were effective to repression of off-odor from chungkugjang. Sweet taste of stew of black bean chungkugjang was strong as compared with that of soybean chungkugjang, indicating that palatability of BBCK or BBCR was good.

Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge (하수슬러지의 수열탄화를 통한 고형연료 탄화 특성)

  • Seong Kuk Han;Moonil Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.53-61
    • /
    • 2023
  • Most of the sewage sludge is organic waste containing a large amount of organic substances decomposable by microorganisms by biological treatment. As for existing sewage sludge treatment methods, reduction and fuel conversion are being carried out using technologies such as drying, incineration, torrefaction, carbonization. However, the disadvantage of high energy consumption has been pointed out as latent heat of 539 kcal/kg is consumed based on drying. Therefore, in this study, we intend to produce solid fuel through hydrothermal carbonization(HTC), which is a thermochemical treatment. To evaluate the value of solid fuel, the characteristics of carbonization and fuel ratio were analyzed. As a result, as the hydrothermal carbonization reaction temperature increased, the lower heating value also increased by about 500 kcal/kg due to the increase in the degree of carbonization. H/C, O/C, ratio showed a decreasing trend from 1.78, 0.46 to 1.57, 0.32. When the ratio of ash to combustible content (fixed carbon + volatile) of dry sludge was 0.25 or more, it was derived that the degree of carbonization and calorific value did not increase even when hydrothermal carbonization was performed.

Analysis of Volatile Organic Compounds by GC/MS with the Thermal Desorber and Characterization of the Major Components Attributing to Malodor -An Analytical Example of the Odor Emitted from the Compost of Food Waste- (흡착 열탈착 장치와 GC/MS를 이용한 휘발성 유기화합물의 분석과 악취원인 성분의 예측 - 음식물 퇴비화 과정에서 발생되는 악취분석의 예 -)

  • Yu, Mee-Seon;Yang, Sung-Bong;Ahn, Jeong-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • The simultaneous analysis of the odorous compounds designated by law in Korea and Japan was examined with the thermal desorber gas chromatography-mass spectrometry using one column. The approximate concentrations of trimethyl amine, acetaldehyde, methyl mercaptan and dimethyl sulfide were estimated. Styrene, dimethyl disulfide, propionaldehyde, n-butyl aldehyde, i-butyl aldehyde, n-valeraldehyde, i-valeraldehyde, ethyl acetate, toluene, xylene, methyl i-butyl ketone and i-butanol were detected at concentrations of the detection limits of their threshold values. As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds emitted from compost procedure of food waste were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated from the concentrations and threshold values of the detected components. From the result of analysis, 34 compounds were confirmed and among them, trimethyl amine, i-valeraldehyde, methyl mercaptan, methyl allyl sulfide, dimethyl sulfide, acetaldehyde, ethanol, n-butyaldehyde were expected to attribute to the odor in order of strength.

Improved Vapor Recognition in Electronic Nose (E-Nose) System by Using the Time-Profile of Sensor Array Response (센서 응답의 Time-Profile 을 이용한 전자 후각 (E-Nose) 시스템의 Vapor 인식 성능 향상)

  • Yoon Seok, Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • The electronic nose (E-nose) recently finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. The odor recognition performance of E-nose can be improved by manipulating the sensor array responses of vapors in time-profile forms. The different chemical interactions between the sensor materials and the volatile organic compounds (VOC's) leave unique marks in the signal profiles giving more information than collection of the conventional piecemal features, i.e., maximum sensitivity, signal slopes, rising time. In this study, to use them in vapor recognition task conveniently, a novel time-profile method was proposed, which is adopted from digital image pattern matching. The degrees of matching between 8 different vapors were evaluated by using the proposed method. The test vapors are measured by the silicon-based gas sensor array with 16 CB-polymer composites installed in membrane structure. The results by the proposed method showed clear discrimination of vapor species than by the conventional method.

Comparison of Instrument Characteristics on the Total Organic Carbon Analysis Method in Water Samples (수질분야 총유기탄소 분석방법에 따른 장비별 특성 비교)

  • Hye-Sung Kim;Eun-Tae Hwang;Chan-Geun Lee;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.353-362
    • /
    • 2023
  • TOC, which can measure more than 90% of organic substances, can be measured quickly and easily,replacing BOD and COD, which were indicators of organic pollutants. According to water quality pollution control standards, when measuring TOC, if the inorganic carbon ratio in the sample is over 50%, the NPOC (Non-Purgeable Organic Carbon) method should be used. If volatile organic compounds (VOCs) are present at a certain concentration, the TC-IC (subtracting inorganic carbon from total carbon) method should be used. To validate the limitations of these analytical conditions, experiments were conducted by varying the ratio of TOC to IC in purified water and measuring the concentration of TOC in test solutions. The results showed no significant difference between the TC-IC method and the NPOC method. When measuring samples with added VOC standard solutions, it was observed that the carbon loss due to purging was not significant when using the NPOC method. Therefore, it is concluded that the choice of analytical method does not lead to significant differences when VOCs are present in the sample. To account for potential variations in results based on water quality pollution control standards and regulations regarding the approval and testing of environmental measurement devices, a comparison of field sample concentration values was made using two widely used types of TOC analyzers in Korea. The results showed variations of 0.02 to 0.83 mg/L between methods depending on the manufacturer, highlighting the need for caution when selecting an instrument.