• Title/Summary/Keyword: 횡방향 경사

Search Result 80, Processing Time 0.025 seconds

Dynamic Behaviors of Behavior Piles and Countermeasures to Improve Their Seismic Performance Using Shaking Table Tests (진동대 모형실험을 이용한 경사말뚝의 동적 거동 분석과 내진성능 향상을 위한 보강기법 개발)

  • Hwang Jae Ik;Lee Yong Jae;Han Jin Tae;Kim Myoung Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • Shaking table tests are performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance of the batter pile. First of all, this study demonstrates how batter piles and vertical piles behave under static lateral loadings. Secondly, the vulnerability of batter plies under dynamic lateral loadings is demonstrated showing the axial forces and bending moments mobilized at the pile heads during shaking table tests. Thirdly, countermeasures to overcome the vulnerability of behavior piles during earthquakes are pursued. The countermeasures investigated in this study include introduction of a rubber element at the pile head and the deck plate connection, and introduction of hinge connection. Finally, the slope of batter piles which induces the minimum pile forces during the dynamic loadings are investigated and found to be 8:3 (Vertical to Horizontal).

Migration characteristics with Forms of Channels and Bed Conditions (수로의 형상과 하상조건에 따른 이행특성)

  • 차영기;이종석
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.103-114
    • /
    • 1993
  • Migration characteristics with forms of channels and bed conditions are studied by constant-radius curve (CRC), sine-generated curve (SGC) and small-wave theory (SWT) method. For channels which are meandering and of which bed conditions are of coarse materials, transverse bed slope, depth and velocity distributions are predicted by CRC and SGC method, and the results are compared with measured field data, And for fine bed-materials of the sinuous channels, lateral and downvalley migration rates are computed by SWT method. It is confirmed from this investigation that transverse mass-flux factor plays significant roles in determining of magnitude and direction of meander migration.

  • PDF

Comparative Study on k-ε and k-ω Closures under the Condition of Turbulent Oscillatory Boundary Layer Flow at High Reynolds Number (높은 레이놀즈수를 가진 난류 진동 경계층에서의 k-ε과 k-ω 난류모형의 비교)

  • Son, Min-Woo;Lee, Guan-Hong;Lee, Kil-Seong;Lee, Du-Han
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.189-198
    • /
    • 2011
  • The aim of this study is to compare k-$\varepsilon$ and k-$\omega$ closures under the condition of oscillatory layer flow at high Reynolds number. A one dimensional vertical model incorporated with flow momentum equations and turbulence models (k-$\varepsilon$ and k-$\omega$) is applied to the laboratory measurements in the turbulent oscillatory boundary layer. The numerical simulation reveals that both turbulence models calculate similar velocity profiles and turbulent kinetic energy (TKE). In addition, both deliver high accuracy under the condition of negligible spanwise pressure gradient. Therefore, it is recommended in this study to use k-$\varepsilon$ closure, of which numerical coefficients have been calibrated from many studies, for the cases of straight channel, estuary, and coastal environment where the spanwise pressure gradient is not significant.

Oblique Angle Effect of Impinging Jet on Heat Flow Characteristics of a Corrugated Structure (충돌제트의 경사각도가 파형 구조의 열유동 특성에 미치는 영향)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.83-93
    • /
    • 2017
  • A numerical analysis is made of the fluid flow and heat transfer characteristics in the corrugated structure that traps the spent air in the corrugations between impinging jets to reduce crossflow effects on downstream jets in the array. All computations are performed by considering three-dimensional, steady state, and incompressible flow by using the ANSYS-CFX 15.0 code. Averaged jet Reynolds number is 10,000. The oblique angles of impingement jets on the spanwise section are $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, and the oblique angles of impingement jets on the streamwise section are $70^{\circ}$, $90^{\circ}$, $110^{\circ}$. The investigation focuses on the oblique angle influence of impinging jet array on the fluid flow and heat transfer characteristics of a corrugated structure.

A Prediction Model of Transverse Bed Slope in Meandering Rivers (사행하천(蛇行河川)의 횡방향(橫方向) 하상경사(河床傾斜)의 예측모형(豫測模型))

  • Hong, Chang Sun;Chung, Yong Tai
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.81-89
    • /
    • 1991
  • An interesting property of meandering river patterns is that they slowly deform, as bank erosion on one side of a channel and deposition on the other side result in the location of the channel. In this study we used a sine-generated meander pattern proposed by Langbein and Leopold(1966) to develop a solution of a linear, second-order differential equation of transverse bed slope(bed topography) proposed by Odgaard(1986). A new model for transverse bed slope(bed topography), that accounts for the phase lag and the influence of the width to depth aspect ratio, was developed in this study and compared with results of field measurements.

  • PDF

Model Test Study on the Reinforcing Effect of Inclined System Bolting (경사볼트의 보강효과에 대한 모형시험 연구)

  • Lee, Jea-Dug;Kim, Byoung-Il;Piao, Ming-Shan;Yoo, Wan-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.231-238
    • /
    • 2012
  • The rockbolt functions as a main support, which restricts enlargement of the plasticity area and increases stability in the original ground around tunnels, and prevents a second deformation of an excavated surface by supplementing vulnerability arising from opening of the excavated surface. System bolting is generally applied if ground conditions are bad. System bolting is generally installed perpendicular to the excavation direction in every span. If a place is narrow, or it is difficult to insert bolts due to construction conditions, it may be connected and used with short bolts, or installed obliquely. In this study, laboratory model tests were performed to analyze the effect of the ground being reinforced by inclined bolts, based on a bending theory that assumes that the reinforced ground is a simple beam. In all test cases, deflections and vertical earth pressures induced by overburden soil pressure were measured. Total of 99 model tests were carried out, by changing the installation angle of bolts, lateral and longitudinal distance of bolts, and soil height. The model test results indicated that when the installation angle of bolts was less than $75^{\circ}$, deflections of model beams tended to increase rapidly. Also, the relaxed load that was calculated by earth pressure was rapidly increased when the installation angle of bolts was less than $75^{\circ}$. However, the optimum installation angle of inclined bolts was judged to be in the range of $90^{\circ}{\sim}75^{\circ}$. Also, as might be expected, the reinforcement effect of bolts was increased when the longitudinal and lateral distance of bolts was decreased.

An Analysis of Interception Efficiency at Transverse Grate Inlets (횡유입부의 차집효율 분석)

  • Kim, Jea-Kwon;Kim, Jung-Soo;Lee, Joon-Ho;Yoon, Sei-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.519-523
    • /
    • 2006
  • 간선도로의 유입부 설계에는 도로 표면에 떨어진 강우만을 고려하여 빗물받이 간격, 형태 등을 결정하고 있으나, 현실적으로는 간선도로와 연결된 소규모 도로에서 횡유입부로 유입되지 않는 유량이 간선도로의 침수를 가중시키고 있는 실정이다. 이러한 점들을 고려할 때, 침수피해에 의한 시민들의 재산을 보호하고 불편을 덜어주기 위해 소규모 도로의 합리적인 배수시설이 필요하며, 이런 배수시설로 부각되는 횡유입부의 차집효율을 분석할 필요가 있다. 본 연구에서는 횡유입부의 설계 실태를 조사하고, 현장조사를 실시하여 수리인자들을 실측하여, 실험장치의 제작과 효율적인 실험조건을 선정하였다. 도로에서 횡방향으로 설치되어 있는 빗물받이 유입구의 규모에 따른 가능 최대 차집유량과 그에 따른 효율을 분석하기 위하여 도로 종경사$(2{\sim}11.5%)$, 유량$(1.5{\sim}24{\ell}/sec)$, 빗물받이 유입구의 규모 및 형태(TYPEⅠ, TYPEⅡ)를 변화시키면서 실험을 실시하였다. 실측 자료를 분석한 결과, 도로의 종경사가 6%이상이 되면, 횡유입부의 차집효율이 급히 감소되는 것을 알 수 있었으며, 빗물받이 유입구 TYPEⅠ의 형태가 TYPEⅡ의 경우보다 차집효율이 현저하게 감소하고 있음을 알 수 있었다.

  • PDF

Design of Lateral Controller for Autonomous Guidance of a Farm Tractor in Field Operations (농업용 트랙터의 작업 시 자동 운전 유도를 위한 횡방향 제어기 설계)

  • Han, Kun Hee;Lee, Ji Min;Song, Bongsob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.551-557
    • /
    • 2014
  • This paper presents a robust lateral controller for autonomous guidance of a farm tractor in field operations. Although mechanical steering actuators have recently been used for passenger vehicles, the steering actuator of the farm tractor is based on a hydraulic system, resulting in limited bandwidth and a larger time delay. Based on a kinematic tractor model with steering actuator dynamics, a nonlinear control technique called dynamic surface control is applied to design a robust lateral controller that compensates for uncertainty owing to steering actuator and road geometry. Finally, tracking performance and robustness of the proposed controller are validated via commercial tractor simulations, with respect to the time delay of the steering actuator and road geometry (e.g., up and down hills), on a given field with a constant friction coefficient.

Derivation of a 3D Arching Formula for Tunnel Excavation in Anisotropic Ground Conditions and Examination of Its Effects (비등방 지반에서 터널굴착을 위한 3차원 아칭식의 유도 및 그 영향 조사)

  • Son, Moorak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.19-27
    • /
    • 2018
  • Terzaghi proposed a 2D formula for arching based on the assumption of a vertical sliding surface induced in the upper part due to the downward movement of a trapdoor. The formula was later expanded to consider 3D tunnel excavation conditions under inclined sliding surfaces. This study further extends the expanded formula to consider the effects of different ground properties and inclined sliding conditions in the transverse and longitudinal directions considering anisotropic ground conditions, as well as 3D tunnel excavation conditions. The 3D formula proposed in this study was examined of the induced vertical stress under various conditions (ground property, inclined sliding surface, excavation condition, surcharge pressure, earth pressure coefficient) and compared with the 2D Terzaghi formula. The examination indicated that the induced vertical stress increased as the excavation width and length increased, the inclination angle increased, the cohesion and friction angle decreased, the earth pressure coefficient decreased, and the surcharge pressure increased. Under the conditions examined, the stress was more affected at low excavation lengths and by the ground properties in the transverse direction. In addition, The comparison with the 2D Terzaghi formula showed that the induced vertical stress was lower and the difference was highly affected by the ground properties, inclined sliding conditions, and 3D tunnel excavation conditions. The proposed 3D arching formula could help to provide better understanding of complex arching phenomena in tunnel construction.