DOI QR코드

DOI QR Code

Oblique Angle Effect of Impinging Jet on Heat Flow Characteristics of a Corrugated Structure

충돌제트의 경사각도가 파형 구조의 열유동 특성에 미치는 영향

  • Hwang, Byeong Jo (School of Mechanical Engineering, Yonsei University) ;
  • Kim, Seon Ho (School of Mechanical Engineering, Yonsei University) ;
  • Joo, Won Gu (School of Mechanical Engineering, Yonsei University) ;
  • Cho, Hyung Hee (School of Mechanical Engineering, Yonsei University)
  • Received : 2016.12.20
  • Accepted : 2017.03.02
  • Published : 2017.04.01

Abstract

A numerical analysis is made of the fluid flow and heat transfer characteristics in the corrugated structure that traps the spent air in the corrugations between impinging jets to reduce crossflow effects on downstream jets in the array. All computations are performed by considering three-dimensional, steady state, and incompressible flow by using the ANSYS-CFX 15.0 code. Averaged jet Reynolds number is 10,000. The oblique angles of impingement jets on the spanwise section are $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, and the oblique angles of impingement jets on the streamwise section are $70^{\circ}$, $90^{\circ}$, $110^{\circ}$. The investigation focuses on the oblique angle influence of impinging jet array on the fluid flow and heat transfer characteristics of a corrugated structure.

파형 구조는 배열 충돌제트 하류에서의 횡방향 유동 영향을 줄이기 위해 충돌제트 사이의 파형 속에 사용된 냉각 공기를 유입시키며, 이러한 파형 구조에서의 유동 및 열전달 특성에 대해 수치해석을 수행하였다. 모든 계산은 3차원, 정상상태, 비압축성 유동으로 고려하였으며 ANSYS-CFX 15.0 코드를 사용하였다. 제트 홀에서 평균 Reynolds 수는 10,000이며, Spanwise 단면에서 충돌제트의 경사각도는 $70^{\circ}$, $80^{\circ}$$90^{\circ}$ 이고, Streamwise 단면에서 충돌제트의 경사각도는 $70^{\circ}$, $90^{\circ}$$110^{\circ}$ 이다. 본 연구에서는 배열 충돌제트의 경사각도가 파형 구조의 유동 및 열전달 특성에 미치는 영향에 대해 고찰하였다.

Keywords

References

  1. Han, J., Dutta, S. and Ekkad, S., Gas Turbine Heat Transfer and Cooling Technology, CRC Press, New York, N.Y., U.S.A., 2013.
  2. Liu, H.H.T. and Hua, J., "Three-Dimensional Integrated Thermodynamic Simulation for Wing Anti-Icing System," Journal of Aircraft, Vol. 41, No. 6, pp. 1291-1297, 2004. https://doi.org/10.2514/1.5594
  3. Wang, B., Guo, X., Xie, O., Wang, Z. and Wang, G., "Heat Transfer Characteristic Research During Jet Impinging on Top/Bottom Hot Steel Plate," International Journal of Heat and Mass Transfer, Vol. 101, pp. 844-851, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.083
  4. Jambunathan, K., Lai, E., Moss, M.A. and Button, B.L., "A Review of Heat Transfer Data for Single Circular Jet Impingement," International Journal of Heat and Fluid Flow, Vol. 13, Issue 2, pp. 106-115, 1992. https://doi.org/10.1016/0142-727X(92)90017-4
  5. Viskanta, R., "Heat Transfer to Impinging Isothermal Gas and Flame Jet," Experimental Thermal and Fluid Science, Vol. 6, Issue 2, pp. 111-134, 1993. https://doi.org/10.1016/0894-1777(93)90022-B
  6. Goldstein, R.J. and Franchett, M.E., "Heat Transfer From a Flat Surface to an Oblique Impinging Jet," ASME Journal of Heat Transfer, Vol. 110. Issue 1, pp. 84-90, 1988. https://doi.org/10.1115/1.3250477
  7. Vipat, O., Feng, S.S., Kim, T., Pradeep, A.M. and Lu, T.J., "Asymmetric Entrainment Effect on the Local Surface Temperature of a Flat Plate Heated by an Obliquely Impinging Two-Dimensional Jet," International Journal of Heat and Mass Transfer, Vol. 52, Issue 21-22, pp. 5250-5257, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.007
  8. Weigand, B. and Spring, S., "Multiple Jet Impingement-A Review," Heat Transfer Research, Vol. 42, Issue 2, pp. 101-142, 2011. https://doi.org/10.1615/HeatTransRes.v42.i2.30
  9. Hwang, B.J., Chung, H., Joo, W.G. and Cho, H.H., "Numerical Analysis on the Effects of Supply Channel and Jet Hole Arrangement on Heat Flow Characteristics of Impingement Jet," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 4, pp. 77-86, 2016. https://doi.org/10.6108/KSPE.2016.20.4.077
  10. Esposito, E.I., Ekkad, S.V., Kim, Y. and Dutta, P., "Comparing Extended Port and Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling," Proceedings of ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal, Canada, GT 2007-27390, May 2007.
  11. Yang, L., Li, W., Chi, Z., Ren, J. and Jiang, H., "Effect of Corrugated Orifice and Pin-Fin on Multiple Array Impingement Cooling with Low Nozzle to Target Distance," Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Dusseldorf, Germany, GT 2014-25494, Jun. 2014.
  12. Chi, Z., Kan, R., Ren, J. and Jiang, H., "Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure," International Journal of Heat and Mass Transfer, Vol. 64, pp. 567-580, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.052
  13. Correia, V.H.S., "Impingement Cooling Apparatus for Turbine Shrouds having Ducts of Increasing Cross-Sectional Area in the Direction of Post-Impingement Cooling Flow," U.S. Patent No. 5480281, Jan. 1996.
  14. Haumann, J., Knopfli, A., Sattelmayer, T. and Tresch, R., "Apparatus for Impingement Cooling," U.S. Patent No. 5467815, Nov. 1995.
  15. Bunker, R.S., "Cooling for Double-Wall Structures," U.S. Patent No. 6000908, Dec. 1999.
  16. Menter, F.R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149
  17. Zuckerman, N. and Lior, N., "Impingement Heat Transfer : Corrections and Numerical Modeling," ASME Journal of Heat Transfer, Vol. 127, Issue 5, pp. 544-552, May 2005. https://doi.org/10.1115/1.1861921
  18. Hofmann, H.M., Kaiser, R., Kind, M. and Martin, H., "Calculations of Steady and Pulsating Impinging Jets - An Assessment of 13 Widely Used Turbulence Models," Numerical Heat Transfer, Part B, Vol. 51, Issue 6, pp. 565-583, 2007. https://doi.org/10.1080/10407790701227328
  19. Sagot, B., Antonimi, G., Christgen, A. and Buron, F., "Jet Impingement Heat Transfer on a Flat Plate at a Constant Wall Temperature," International Journal of Thermal Sciences, Vol. 47, Issue 12, pp. 1610-1619, 2008. https://doi.org/10.1016/j.ijthermalsci.2007.10.020
  20. Li, W., Ren, J., Hongde, J. and Ligrani, P., "Assessment of Six Turbulence Models for Modeling and Predicting Narrow Passage Flows, Part 1: Impingement Jets," Numerical Heat Transfer, Part A, Vol. 69, No. 2, Issue 2, pp. 109-127, 2016. https://doi.org/10.1080/10407782.2015.1069665
  21. Isman, M.K. Morris, P.J. and Can M., "Investigation of Laminar to Turbulent Transition Phenomena Effects on Impingement Heat Transfer," Heat and Mass Transfer, Vol. 52, No, 10, pp. 2027-2036, Nov. 2016. https://doi.org/10.1007/s00231-015-1719-8