DOI QR코드

DOI QR Code

Design of Lateral Controller for Autonomous Guidance of a Farm Tractor in Field Operations

농업용 트랙터의 작업 시 자동 운전 유도를 위한 횡방향 제어기 설계

  • Received : 2013.06.27
  • Accepted : 2014.02.25
  • Published : 2014.05.01

Abstract

This paper presents a robust lateral controller for autonomous guidance of a farm tractor in field operations. Although mechanical steering actuators have recently been used for passenger vehicles, the steering actuator of the farm tractor is based on a hydraulic system, resulting in limited bandwidth and a larger time delay. Based on a kinematic tractor model with steering actuator dynamics, a nonlinear control technique called dynamic surface control is applied to design a robust lateral controller that compensates for uncertainty owing to steering actuator and road geometry. Finally, tracking performance and robustness of the proposed controller are validated via commercial tractor simulations, with respect to the time delay of the steering actuator and road geometry (e.g., up and down hills), on a given field with a constant friction coefficient.

본 논문은 작업 시 농업용 트랙터의 운전지원을 위한 강인한 횡방향 제어기를 제안하고자 한다. 자동차와 달리 트랙터의 조향 방식은 유압실린더를 이용함으로써 상대적으로 큰 시간지연을 가지고 있으며 작업 시 지면 환경도 일반 도로와는 다르다. 조향 액추에이터 모델을 포함하는 기구학적 트랙터 모델을 기반으로 동적 표면 제어라는 비선형 제어기법을 적용하여 조향 액추에이터의 시간지연 및 노면 경사의 변화에 강인한 횡방향 제어기를 설계한다. 마지막으로 상용 트랙터 시뮬레이터를 이용하여 마찰 계수가 일정한 주어진 노면 상태에서 조향 액추에이터의 시간 지연 변경이나 오르막 또는 내리막과 같은 지형 조건 변화에 대한 횡방향 제어기의 성능 및 강인성을 검증한다.

Keywords

References

  1. Li, M., Imou, K., Wakabayashi, K. and Yokoyama, S. 2009, "Review of Research on Agricultural Vehicle Autonomous Guidance," Int. J. of Agric. & Bio. Eng, Vol. 2, No. 3, pp. 1-26.
  2. Reid, J. F., Zhang, Q. and Noguchi, N., 2000, "Agricultural Automatic Guidance Research in North America," Computers and Electronics in Agriculture, Vol. 25, pp.155-167. https://doi.org/10.1016/S0168-1699(99)00061-7
  3. Fang, H., Fan. R., Thuilot, B. and Martinet, P., 2006, "Trajectory Tracking Control of Farm Vehicles in Presence of Sliding," Robotics and Autonomous Systems, Vol. 54, pp. 828-839,. https://doi.org/10.1016/j.robot.2006.04.011
  4. Zhang, Q., Wu, D., Reid, J. F. and Benson, E. R., 2002, "Model Recognition and Validation for an Off-road Vehicle Electrohydraulic Steering Controller," Mechatronics, 12, pp. 845-858. https://doi.org/10.1016/S0957-4158(01)00030-7
  5. Eaton, R., Katupotiya, J., Siew, K, W. and Howarth, B., 2010, "Autonomous Farming: Modeling and Control of Agricultural Machinery in a Unified Framework," Vol. 8, Nos 1-4, pp. 444-457. https://doi.org/10.1504/IJISTA.2010.030223
  6. Qiu, Q., Zhang, J., Reid, F. and Wu, D., 1999, "Modeling and Simulation of an Electrohydraulic Steering System," ASAS/CSAE-SCGR Paper, No. 993076.
  7. Rajamani, R., 2006, Vehicle Dynamics and Control. Springer.
  8. Rajamani, R., Zhu, C. and Alexander, L., 2003, "Lateral Control of a Backward Driven Front-Steering Vehicle," Control Engineering Practice, Vol. 11, No. 5, pp. 531-540. https://doi.org/10.1016/S0967-0661(02)00143-0
  9. Song, B. and Hedrick, J, K., 2011, Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach, Springer.
  10. Song, B., 2013, "Cooperative Lateral Vehicle Control for Autonomous Valet Parking," Int. J. of Automotive Technology, Vol. 14, No. 4, pp. 633-640. https://doi.org/10.1007/s12239-013-0068-1
  11. 2011, CarSim Version 8.1. Available via http://www.carsim.com.
  12. Kuo, T. C., Huang, Y. J., Chen, C. Y. and Cahng, C. H., 2008, "Adaptive Sliding Mode Control with PID Tuning for Uncertain Systems," Engineering Letters, Vol. 16.