• Title/Summary/Keyword: 회귀분석모델

Search Result 1,535, Processing Time 0.03 seconds

Statistical Analysis for Risk Factors and Prediction of Hypertension based on Health Behavior Information (건강행위정보기반 고혈압 위험인자 및 예측을 위한 통계분석)

  • Heo, Byeong Mun;Kim, Sang Yeob;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.685-692
    • /
    • 2018
  • The purpose of this study is to develop a prediction model of hypertension in middle-aged adults using Statistical analysis. Statistical analysis and prediction models were developed using the National Health and Nutrition Survey (2013-2016).Binary logistic regression analysis showed statistically significant risk factors for hypertension, and a predictive model was developed using logistic regression and the Naive Bayes algorithm using Wrapper approach technique. In the statistical analysis, WHtR(p<0.0001, OR = 2.0242) in men and AGE (p<0.0001, OR = 3.9185) in women were the most related factors to hypertension. In the performance evaluation of the prediction model, the logistic regression model showed the best predictive power in men (AUC = 0.782) and women (AUC = 0.858). Our findings provide important information for developing large-scale screening tools for hypertension and can be used as the basis for hypertension research.

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Proposal of allowable prediction error range for judging the adequacy of groundwater level simulation results of artificial intelligence models (인공지능 모델의 지하수위 모의결과 적절성 판단을 위한 허용가능 예측오차 범위 제안)

  • Shin, Mun-Ju;Ryu, Ho-Yoon;Kang, Su-Yeon;Lee, Jeong-Han;Kang, Kyung Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.449-449
    • /
    • 2022
  • 제주도는 용수의 대부분을 지하수에 의존하므로 지하수위의 예측 및 관리는 매우 중요한 사항이다. 제주도의 지층은 화산활동에 의한 현무암이 겹겹이 쌓여있는 형태를 나타내며 육지의 지층구조와 매우 다른 복잡한 형태를 나타낸다. 이에 따라 제주도 지하수위의 예측은 매우 난해하며, 최근에는 딥러닝 인공지능 모델을 활용하여 지하수위를 예측하는 연구사례가 증가하고 있다. 기존의 연구들은 인공지능 모델들이 지하수위를 적절히 예측한다고 보고하고 있으나 예측의 적절성에 대한 판단기준을 제시하지 못하였으므로 이에 대한 명확한 제시가 필요하다. 본 연구의 목표는 인공지능을 활용한 지하수위 예측오차가 허용 가능한지 판단할 수 있는 기준을 제시함에 있다. 이를 위해 전 세계의 과거 20년 동안 관련 연구결과들을 수집 및 분석하였으며, 분석 결과 인공지능 모델의 지하수위 예측오차는 지하수위 변동성이 큰 지역일수록 증가하는 것을 확인하였다. 이것은 지하수위의 변동형태가 크고 복잡할수록 인공지능 모델의 지하수위 예측성능은 낮아진다는 것을 의미한다. 이 관계를 명확하게 나타내기 위해 지하수위 최대변동폭과 평균제곱근오차 및 최대오차와의 관계를 선형회귀식으로 도출하여 허용가능한 예측오차 기준을 제시하였다. 그리고 기존 연구들에서 제시한 Nash-Sutcliffe 효율성지수와 결정계수를 분석하여 선형회귀식에 의한 기준을 보완할 수 있는 추가적인 기준을 제시하였다. 본 연구에서 제시한 인공지능 모델에 의한 지하수위 예측결과의 적절성 판단기준은 향후 지속적으로 증가하는 인공지능 예측연구에 유용하게 사용될 수 있다.

  • PDF

The Data-based Prediction of Police Calls Using Machine Learning (기계학습을 활용한 데이터 기반 경찰신고건수 예측)

  • Choi, Jaehun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.101-112
    • /
    • 2018
  • The purpose of the study is to predict the number of police calls using neural network which is one of the machine learning and negative binomial regression, by using the data of 112 police calls received from Chungnam Provincial Police Agency from June 2016 to May 2017. The variables which may affect the police calls have been selected for developing the prediction model : time, holiday, the day before holiday, season, temperature, precipitation, wind speed, jurisdictional area, population, the number of foreigners, single house rate and other house rate. Some variables show positive correlation, and others negative one. The comparison of the methods can be summarized as follows. Neural network has correlation coefficient of 0.7702 between predicted and actual values with RMSE 2.557. Negative binomial regression on the other hand shows correlation coefficient of 0.7158 with RMSE 2.831. Neural network has low interpretability, but an excellent predictability compared with the negative binomial regression. Based on the prediction model, the police agency can do the optimal manpower allocation for given values in the selected variables.

Analysis on Correlation between AE Parameters and Stress Intensity Factor using Principal Component Regression and Artificial Neural Network (주성분 회귀분석 및 인공신경망을 이용한 AE변수와 응력확대계수와의 상관관계 해석)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Park, Phi-Iip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.80-90
    • /
    • 2001
  • The aim of this study is to develop the methodology which enables to identify the mechanical properties of element such as stress intensity factor by using the AE parameters. Considering the multivariate and nonlinear properties of AE parameters such as ringdown count, rise time, energy, event duration and peak amplitude from fatigue cracks of machine element the principal component regression(PCR) and artificial neural network(ANN) models for the estimation of stress intensity factor were developed and validated. The AE parameters were found to be very significant to estimate the stress intensity factor. Since the statistical values including correlation coefficients, standard mr of calibration, standard error of prediction and bias were stable, the PCR and ANN models for stress intensity factor were very robust. The performance of ANN model for unknown data of stress intensity factor was better than that of PCR model.

  • PDF

Development of Water Balance Model for Agricultural Watershed Considering on Water Supply and Use (농업용수의 공급 및 이용을 고려한 유역 물수지 모형 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Shin, Ji-Hyeon;Lee, Kwang-Ya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.513-513
    • /
    • 2022
  • 국가물관리기본법에 의거하여 통합물관리 정책에 부합하는 농어촌용수 계획 및 관리 요구에 따른 유역 및 용수구역 단위의 물관리 필요하며, 국가수자원계획의 물수급 정책 수립시 농업용수의 공급, 이용 및 관리 특성 고려되어야 한다. 현재 농업용수는 개수로 방식 용수공급체계 및 수문 직접조작에 의한 용수배분체계로 공급량 대비 사용량(벼의 생육에 사용된 수량)의 비율이 48%에 불과하고, 농경지 상류와 하류의 공급량 차이가 크게 발생하며, 경지면적 감소가 공급 필요량 감소로 연결되지 않는다. 현재 국가유역수자원모델 (K-WEAP, K-MODSIM)은 모델이 가진 분석 능력의 한계로 인하여 농업용수 물수급 해석에 왜곡이 발생하기 때문에, 농업용수 특성이 반영된 농업용수 수요·공급 표준화 모형이 필요하다. 본 연구에서는 기존 유역물수지모델 현황 및 농업용수 적용의 한계점을 파악하고, 농업용수의 공급 및 이용을 고려한 유역 물수지 모형 개발을 목표로 한다. 기존 농업용수 물수지 분석은 순물소모량 개념 적용에 따른 회귀수량 획일화와 이에 따른 공급량 왜곡, 유역내 복잡하고 다양한 농업용수 공급체계를 하나의 가상저수지로 단순화 함으로서 유역내 들녘별 농업용수 과부족 분석 불가능, 하천과 저수지 공급 우선순위 현장과 불일치, 노후된 기초자료 등의 한계가 존재하며, 이를 위한 개선방안을 도출하고자 한다. 또한, 농업용수 회귀수량의 경우 실측기반의 회귀수량 산정 방법을 제시하고자 하며, 단일 수원공 및 복합 수원공의농업용수 물수지 분석 방법을 개발하고자 한다. 본 연구의 목적은 농업용수 물수급 특성이 국가수자원계획에 반영할 수 있도록 기본 수자원모델(K-MODSIM)과 연계가능한 농업용수 표준 모형개발로써, 향후 국가수자원계획(국가물관리기본계획, 전국하천유역수자원관리계획, 농어촌용수이용 합리화계획 등) 수립에 반영될 수 있을 것으로 판단된다.

  • PDF

Outlier-Object Detection Using an Image Pair Based on Regression Analysis: Noise Variance Estimation and Performance Analysis (영상 쌍에서 회귀분석에 기초한 이상 물체 검출: 잡음분산의 추정과 성능 분석)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.25-34
    • /
    • 2008
  • By comparing two images, which are captured with the same scene at different time, we can detect a set of outliers, such as occluding objects due to moving vehicles. To reduce the influence from the different intensity properties of the images, an intensity compensation scheme, which is based on the polynomial regression model, is employed. For an accurate detection of outliers alleviating the influence from a set of outliers, a simple technique that reruns the regression is employed. In this paper, an algorithm that iteratively reruns the regression is theoretically analyzed by observing the convergence property of the estimates of the noise variance. Using a correction constant for the estimate of the noise variance is proposed. The correction enables the detection algorithm robust to the choice of thresholds for selecting outliers. Numerical analysis using both synthetic and Teal images are also shown in this paper to show the robust performance of the detection algorithm.

Analysis of Impact Factors for the Improvement of Conceptual Cost Estimation Accuracy for Public Office Building (공공청사 개산견적 정확도 향상을 위한 공사비 영향요인 분석)

  • Jo, Yeong-Ho;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.495-506
    • /
    • 2021
  • A Conceptual cost estimate, which is computed in the preliminary step of a project, is important for decision-making by a contractor in terms of the project budget, economic feasibility and validity analysis, and alternative comparisons. Therefore, a high error rate of a prediction model for a conceptual cost estimate can lead to various problems including excessive project expenditures and a delayed break-even point. this study proposed optimal impact factors by configuring quantitative impact factors computable in a preliminary step in various cases(combinations of impact factors). subsequently, the accuracy of different cases was comparatively analyzed by using the cases as input values of a prediction model using regression analysis. when the optimal combination of impact factors proposed in this study and other combination of impact factors were applied to the prediction model, the regression analysis-based prediction model exhibited 0.2-4.7% improvements in accuracy, respectively. the optimal combination of impact factors proposed in this study improved the accuracy of the prediction model of a conceptual cost estimate by removing unnecessary impact factor.

Sustained Vowel Modeling using Nonlinear Autoregressive Method based on Least Squares-Support Vector Regression (최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 이용한 지속 모음 모델링)

  • Jang, Seung-Jin;Kim, Hyo-Min;Park, Young-Choel;Choi, Hong-Shik;Yoon, Young-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.957-963
    • /
    • 2007
  • In this paper, Nonlinear Autoregressive (NAR) method based on Least Square-Support Vector Regression (LS-SVR) is introduced and tested for nonlinear sustained vowel modeling. In the database of total 43 sustained vowel of Benign Vocal Fold Lesions having aperiodic waveform, this nonlinear synthesizer near perfectly reproduced chaotic sustained vowels, and also conserved the naturalness of sound such as jitter, compared to Linear Predictive Coding does not keep these naturalness. However, the results of some phonation are quite different from the original sounds. These results are assumed that single-band model can not afford to control and decompose the high frequency components. Therefore multi-band model with wavelet filterbank is adopted for substituting single band model. As a results, multi-band model results in improved stability. Finally, nonlinear sustained vowel modeling using NAR based on LS-SVR can successfully reconstruct synthesized sounds nearly similar to original voiced sounds.

Calculating the Uniaxial Compressive Strength of Granite from Gangwon Province using Linear Regression Analysis (선형회귀분석을 적용한 강원도 지역 화강암의 일축압축강도 산정)

  • Lee, Moon-Se;Kim, Man-Il;Baek, Jong-Nam;Han, Bong-Koo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.361-367
    • /
    • 2011
  • The uniaxial compressive strength (UCS) is an important factor in the design and construction of surface and underground structures. However, the method employed to measure UCS is time consuming and expensive to apply in the field. Therefore, we developed a model to estimate UCS based on a few properties using linear regression analysis, which is a statistical method. To develop the model, valid factors from the test results were selected from a correlation analysis using a statistical program, and the model was formulated by linear regression based on the relationships among factors. UCS estimates derived from the model were compared with the results of UCS tests, to assess the reliability of the model. The relationship between rock properties and UCS indicates that the factors with the greatest influence on UCS are point load strength and shape facto r. The UCS values obtained using the model are in good agreement with the results of the UCS test. Therefore, the developed model may be used to estimate the UCS of rocks in regions with similar conditions to those of the present study area.